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FLUID DYNAMICS: 

An Introductory Text 

by 

Francis H. Harlow and Anthony A. Amsden 

ABSTRACT 

This report presents a discussion of basic physical fluid dynamics shows 
some useful techniques for obtaining solutions, and illustrates a variety of fluid 
flow phenomena by means of some solved problems. No prior fluid dynamics 
experience is required of the reader. Topics include derivation of the equa- 
tions, an examination of their properties, a simplified discussion of molecular 
dynamics as related to fluid flows, a study of rarefactions and shocks some 
compressible-flow solutions, some incompressible-flow solutions, and an intro- 
duction to numerical methods for high-speed computers. 

I. Introduction 

The mathematical study of fluid dynamics is based 
upon the principles of conservation of mass, momentum, 
and energy. Precise statements of these principles can be 
written in the form of partial differential equations. If, in 
addition, an equation is available that specifies the proper- 
ties of the particular fluid under study, one has exactly as 
many equations as unknowns and can proceed to look for 
solutions to specific problems. 

In general, these solutions are difficult to obtain. 
The motion of a fluid is often extremely complicated, 
involving distortions that cannot be described by simple 
mathematical expressions. In many circumstances, how- 
ever, a relatively easy analysis results in useful informa- 
tion. In this report, we have compiled some of these in a 
form intended for handy reference. We also present an 
introduction to the mathematical aspects of fluid dynam- 
ics that is meant to be useful to a person with a college 
mathematics background but with no previous fluid- 
dynamics experience. 

In recent years, many formidable problems of fluid 
dynamics have been solved by high-speed computers, us- 
ing a variety of new solution techniques developed specifi- 
cally to take advantage of this new capability. The proof- 
testing of any new technique includes its trial for 
problems with known solutions. Some of the examples 
chosen for this report were selected because of their par- 
ticular usefulness for comparison with computer results. 
The choice is also influenced by their value in illustrating 
the basic elements of fluid flow: expansion, compression, 
shocks, and shears. 

We make no claim that these solutions have never 
before been published. Our purpose here is to compile 
them from numerous diverse sources and to put them into 
a form that will be useful for our purposes and, hopefully, 
be of value to other investigators whose projects resemble 
our own. 

J 



II. The Equations of Fluid Dynamics 

A. The Viewpoint of Flux. 

Consider a long cylinder filled with gas that can be 
disturbed by the motion of a piston at the left end. This 
gas is a special case of a "fluid," and we shall often use 
either word. When the piston moves to the right, the gas is 
compressed; when it moves to the left, the gas expands. If 
there are no leaks, the total amount of gas remains con- 
stant in either case. We suppose, furthermore, that no 
viscosity or heat conduction exists. Then the total mass of 
fluid is exactly conserved, while the changes of momen- 
tum and energy of the gas are determined entirely by the 
actions of the piston. 

If the piston moves rapidly enough, the gas near it 
will be disturbed before any signal has had time to propa- 
gate very far away. A sudden rightward motion, for exam- 
ple, will set the adjacent gas into motion and compress it, 
but far to the right the gas can still be at rest and at its 
original density. This means that at any instant of time, t, 
the gas density, p, will be a function of x, the distance 
down the cylinder. In addition, the pressure, p, the veloc- 
ity, u, and the heat energy per unit mass, I, will be func- 
tions of x. At some later instant, these functions of x will 
be altered as a result of the forces exerted by the piston 
and by the pressure within the gas. Thus each "field varia- 
ble" is a function of x and t. 

An observer looking into the cylinder through a 
window will observe that gas rushes by, and, if the piston 
moves back and forth, so will the gas. This motion carries 
not only mass past the window, it also carries momentum 
and energy. The flux of any of these quantities is the 
amount of gas per unit time per unit area going past a 
given point. The notion of a flux is fundamental to the 
discussion of fluid motions. That part of the flux associ- 
ated directly with the motion of the fluid itself (the 
"carrying-along" flux) is referred to as the convective 
flux. There are other fluxes, such as the energy transport 
that comes from work done or from heat conduction even 
when the gas is not moving. 

The first mathematical concept to be established is 
that the convective flux of any quantity is given by the 
product of the gas velocity and the density ofthat quan- 
tity. Thus, 

Flux of mass = up, 
Flux of momentum = upM, (II-1)- 
Flux of energy        = upE, 

where 

and 

P = mass per unit volume, 
M = momentum per unit mass (= velocity, u), 

E = energy per unit mass. 

To see this, consider the mass flux as an example. Let A 

be the cross-sectional area of the cylinder. In an elapsed 
time, 5t, the fluid near the window moves a distance u5t. 
If the -velocity is positive (rightwards), this means that 
fluid from a distance u5t to the left of the window will 
move past the window during the time interval. The vol- 
ume of fluid that goes by is, therefore, 

Volume = AuSt. 

Since p is the mass per unit volume, then the total mass 
that goes by is 

Mass = pAuSt. 

Now the flux is defined as the mass per unit area per unit 
time, so that 

Flux of mass = 
Mass 
A5t 

and we get the first statement of Eq. (II-1). The remaining 
two can be derived similarly. 

With these flux expressions established, we can now 
derive the equations for the gas motion in the cylinder. 
To do this, imagine two windows separated by a distance 
Sx. The total mass lying between the two windows is 

mass = pA5x, 

the product of density and volume. This mass will, how- 
ever, change with time because of the flux of mass going 
by each window. Over an elapsed time, 5t, we have 

later mass - earlier mass = amount entering 

•amount leaving 
or 

p'A5x-pA5x = (pu)j Aßt-(pu)R A5t, 

in which p' is the later density and the subscripts refer to 
fluxes at the left and right windows. Thus, 

ßLz-ß.   - 
6t 

(/0u)R - (PU)L 

6x 

or, as 6x and 6t both go to zero, 

at 
3(pu) 

dx 

This, then, is the mathematical expression for the 
conservation of mass. It contains two unknown functions, 
p and u, both of which vary with position and time. 

The equation expressing momentum conservation is 
derived in a similar fashion but has one added feature. In 
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addition to the contribution from convective flux at the 
two windows, there is a change in momentum that results 
from the forces exerted on the gas. To calculate this we 
use Newton's law of motion: force equals rate of change 
of momentum. Now the total momentum in the interval 
is puA5x. Using our expression for momentum flux, we 
therefore get 

(Pu)'A6x -(Pu)A6x = (pu2)L A6t - (Pu2)R A5t 

+ PLA6t •pRA5t 

The last two terms are the expression of Newton's law: 
pA is the force and the product of this with the time 
interval gives the contribution to the momentum change. 
As before, this can be reduced to the equation 

3(pu)  _ 
3t      " 

aW) 
3x 

9P_ 
dx 

which is the required momentum conservation equation. 
Wc now have two equations, but in the process have intro- 
duced one more variable, the pressure. 

Derivation of the energy equation is similar to that 
of the momentum equation. In addition to the convective 
flux of energy, there are terms expressing the work done 
by the forces on the gas in the interval. This work done 
per unit time is equal to the product of force and veloc- 
ity. The reader can verify that the resulting equation is 

dpE _ _   9puE _   8pu 
dt 9x    ~    3x 

which  closely resembles the form of the momentum 
equation. 

As before, however, the derivation of one more 
equation has introduced one more variable, E. Thus, for 
the four unknown1 functions, p, u, p, and E, we have three 
equations 

3j> 

at 
+ 8(pu) _ 

3x 
=  0 (II-2) 

(H-3) 

(114) 

One more equation is required, and this time we can find 
one that does not introduce a new variable. First, how- 
ever, it is useful to recognize that E, the total energy per 
unit mass, can be expressed as the sum of the heat and 
kinetic energies: 

U\fJU 

at 
> + £<'"' + P)  = 

apE 
at + a 

3x (puE + pu) = 

I + Viu' (H-5) 

Thus, I can take the place of E as the fourth unknown 
function. 

B. The Equation of State. 

The final equation we need is one that describes the 
properties of the fluid itself, the equation of state. As 
usually used, it expresses the fact that the pressure is 
everywhere a function of the density and of the heat 
energy per unit mass. For many gases, this expression is 
written 

P=  (7-l)pI  , (H-6) 

in which 7 is a dimensionless constant that has different 
values for different gases. For example, helium and neon 
have 7 = 1.67; hydrogen, oxygen, nitrogen, and air have 7 
- 1.4; carbon dioxide has 7 = 1.3. Usually, the more 
complicated the chemical formula for the gas, the lower is 
its value of 7, but for every gas 7 is greater than unity. 
(The derivation of these values for 7 is given in Chap. IV.) 

An equation of state with much more general appli- 
cability is the Grüneisen equation of state, which can be 
written 

P = PH + -S- 0-IH) • 
where 

Pu = 
:2(V - V) 

[V0-s(V0-V)r 

c (V0 - V) 
'H 

i2 

o        v o V) 

2s - 1 
and 

V=l/p      . 

This is a three-parameter expression, which de- 
scribes well the properties of a large number of gases and 
metals. The parameters arc pQ , the normal density of the 
material, c, the speed of sound in the unshocked material, 
and 7s, the Grüneisen ratio. The last is related to 7 in the 
polytropic-gas equation of state by 7 = 7- 1. For most 
metals, the value of 7S lies between 1.0 and 2.0; for a few 
metals, 7S < 1.0 can be appropriate. 

If the departures from normal density are slight, 
then the Grüneisen equation can be simplified to the form 

P = c2(p-p0) + (7-l)pI (II-7) 

which we call the "stiffened-gas" equation of state. For 
analytical studies, this simpler form is much easier to ma- 
nipulate, while still retaining the essential qualitative fea- 
tures of a large class of materials. 

The literature is filled with many other examples of 
equations of state, appropriate for a host of specialized 
circumstances. Some are extremely complicated expres- 
sions; some attempt to indicate such exotic behavior that 
they can be recorded only as tables of numbers for which 
no analytical fit is adequate. For the purposes of this 
discussion, however, the simple gas and metal equations 
of state written above will be sufficient. 



III.  Some Properties of the Equations 

A. The Lagrangian Time Derivative. 

Although the four equations for four unknown 
functions can be solved, in principle, for any arbitrary 
motions of the piston, we find in practice that such solu- 
tions can be very difficult to obtain. Nevertheless, the 
equations have some properties that shed considerable 
light upon the general types of processes that can occur in 
the gas within our cylinder. 

From their raw form derived in the previous chap- 
ter, the equations can be manipulated into a variety of 
other equivalent expressions. By expanding derivatives, 
Eq. (II-3) can be written 

9u 
at 

+ u at + pu 3u 
3x 

u M. 
ax 

+ |£ = 0. 
3x 

Multiply Eq. (II-2) by u, and subtract the result from this 
expanded momentum equation. Then the result is 

p 1H. + pu  |» +   8E_ 
at 3x        3x 

=  0 

Likewise, from Eqs. (II-2) and (114) we can derive 

p JS. + pU |E   + ifcu    .  0 . 
ot 3x 3x 

Thus, by expanding the three equations and dividing by p 
where appropriate, we obtain 

j£+ui£ + p-2a.«o, 
3t 3x dx 

(iii-i) 

df = 3f     (M\   /dx_\ 
dt      at     \3x/   \dt ) 

Now, we consider the special case in which we choose dx 
and dt to follow along the motion of an element of fluid. 
Then 

dx :u 
dt 

and we obtain 

df_af.    3f 
dt'dt   U3x 

This, then, is an expression for the rate of change of f 
along the motion of the fluid, the Lagrangian derivative. 
It is, therefore, to be contrasted with the Eulerian deriva- 
tive, 3f/3t, which gives the rate of change of f at a fixed 
position in space (at one of the windows, for example). 
Thus, Eqs. (III-l), (III-2), and (III-3) can be rewritten in 
the form 

-dp J.      
9u - n 

dt 3x' 

iB+I|B-o   , 
dt      p 3x 

A? + I 9ßH = 0 
dt      p    3x 

(JII-4) 

(IH-5) 

(III-6) 

3u 
dt 

+ u 3u 
3x 

+ iiE. = o, 
P   3x 

il    „BE. +ii£H.= o 
3t 3x P     3x 

(IH-2) 

(IH-3) 

Notice how similar the first two terms appear in all 
three equations. The first term is called the Eulerian time 
derivative, and the second the convection term. We now 
shall see how, in each case, these combine to form the 
Lagrangian time derivative. Consider first the following 
identity for the total differential of a function of two 
variables, f(x,t): 

df =  M. 
dt 

dt + ildx 
ax 

B.   Adiabatic Processes. 

A useful alternative for the energy equation can be 
obtained by substituting Eq. (11-5) into Eq. (IU-6). At the 
same time, the derivative of pu is expanded: 

dl A    du  .   1  /   3p  .      3u\ _ n T+UT-+-U7£ + pr-=0    . 
dt        dt      p \   3x     v 3x/ 

Multiply Eq. (HI-5) by u and subtract the product from 
this expanded form. The result is the alternative energy 
equation 

d[ + B .9u = 0 

dt     p 3x 
(III-7) 

This states that for arbitrary slight changes in t and x 
(denoted by dt and dx) the function f changes by an 
amount df, as given by the formula. Alternatively, we 
may write 

We next show that a partial solution can be ob- 
tained even before any particular problem has been sped 
fied. The groundwork for obtaining the partial solution 
has already been laid. The next step is to eliminate du/dx 



between Eqs. (III-4) and (III-7): 

dl _ p dp 
dt ,2 dt 

or 

dj[ = _p_ 
dp    0* 

(III-8) 

For a fluid that has no viscosity or external source of heat 
(the case we are, in fact, considering), this result is equiva- 
lent to the first law of thermodynamics. Together with 
the equation of state, it provides an equation that can be 
integrated with ease. For example, consider the gas equa- 
tion of state, p = (7- l)pl. With this substitution for p, 
Eq. (III-8) becomes 

dI-/     n1 

dp-"^-^ 
from which we obtain 

I = KpT- 1 

p = (7-1) KpT 
(III-9) 

These, then, describe the adiabatic behavior of this ideal- 
ized metal equation of state. 

If the gas in the cylinder is initially homogeneous, 
and at rest, the subsequent motion induced by the piston 
will be adiabatic to within a good degree of approxima- 
tion, and the adiabatic equation of state for pressure as a 
function of density can be used in place of the energy 
equation. One then has the three equations in three 
unknowns: 

9£ 
dt 

+ u 
3x 

3u     n 
3x 

3u .      3u J  1 9p 
+ —   7~ ~  0 al + u3x 

P = fO>) 

p dx 
Oii-n) 

where the last equation is the adiabatic equation of state. 
(If the piston motion is strongly compressive, one must 
always be concerned about the formation of a shock, to 
be discussed below, in which case the adiabatic assump- 
tion is partially invalid.) 

in which K is a constant of integration. 
To interpret this result, recall that the differentials 

in Eq. (III-8) refer to changes along the motion of the 
fluid. Thus, for a given element of fluid, Eq. (III-9) shows 
how pressure and internal energy are related to density as 
this element moves about. In general, the value of K will 
be different for every element, but if K should initially be 
the same everywhere, it always will remain so and Eq. 
(1II-9) can be used for any time or place in the cylinder. 

Thus, our equations have predicted an unexpected 
property of the gas, given in Eq. (III-9): that the motions 
will be adiabatic, with Eq. (III-9) showing two forms of 
the adiabatic equation of state for a gas. We emphasize, 
however, that the adiabatic conclusion depends crucially 
upon the validity of the equations we started with. If 
viscosity or heat conduction are not negligible, then the 
equations are lacking some essential terms that would pre- 
clude arriving at Eq. (III-9). If the peculiar phenomenon 
that we call a shock should arise, then, likewise, the fluid 
changes will not everywhere be adiabatic. 

For the simplified metal equation of state, Eq. 
(II-7), we have 

dl _   2 P-Po  .   .      n I 
dp 

\    The differential equation can be solved to give 

I = KpT 
\7 - 1    IP) 

p = (7-DKpT- 

(m-10) 

C.  The Sound Speed. 

We next investigate a particularly interesting and; 

significant property of Eqs. (Ill-11): they indicate that 
signals are propagated with finite speed, the so-called 
sound speed, and enable us to derive an expression for it. 

Sound signals involve only very slight motions of 
the gas, and the resulting spatial variations of density and 
velocity are also very small. Thus, such products as 
u 3p/3x and u 3u/3x are even smaller and can be dropped 
from the equations. In addition, we note that 

3j> _ 3£ df 
3x ~ 3x dp    ' 

so that Eqs. (IH-11) become 

dt 3x 

9« + (1 df \ & = rj 
3t      \p dp) 3x      U    • 

Next, we neglect the variations of p and 1/p df/dp, treat- 
ing them as constants, a procedure that can be rigorously 
justified for the purpose of deriving the sound-speed 
formulas. Then it can be verified by direct substitution 
that the most general solution of these equations is for p 
to be any function of x ± ct, where 

_ df 
dp 

(III-12) 

The velocity, u, is then also a function of x ± ct. The 
significance of this type of solution is that it represents a 



traveling wave of arbitrary form, whose speed is c. Thus 
the sound speed, e, is given by the square root of the 
derivative of the adiabatic expression for the pressure. 

For a gas, refer to Eq. (III-9), which shows that 

c = JS.  = V'KT-l)!' (111-13) 

while for the simplified metal equation of state, Eq. 
(111-10), the sound speed is 

= ^/¥77© (111-14) 

m -01 + a'[.-(r-D^] 
From the latter, we note that for p = p0 and I = 0, we 
obtain c = a, giving an interpretation of the simplified 
metal equation-of-state constant that it represents the 
sound speed when the metal is cold and at normal 
density. ("Cold" means much cooler than the tempera- 
tures adjacent to high explosives where the equation of 
state is to be applied. Room temperature qualifies as 
"cold" for this purpose.) 

It also is useful to have a sound-speed formula that 
by-passes the derivation of an adiabatic equation of state. 
In general, the equation of state would be expressible in 
the form of p = F,(p,I), which can be solved for the 
alternative form 

I = F2(p,p). 

We have seen that c2 = (dp/dp)A, where the subscript A 
refers to the adiabatic equation-of-state derivative. (This is 
simply a restatement of Eq. (111-12) in different nomen- 
clature.) Now the adiabatic condition, Eq. (IH-8), can be 
expressed as 

P2 (dp) +   \dp)\dpJA    ' 
the right side being the identity expansion of dl/dp. Thus, 

or 

c2 = 

+ c' 

3p 

© 
(111-15) 

where the partial derivatives are taken from the equation 
of state solved for I as a function of p and p. For the gas, 
for example, the solution for I is 

P  1  = 

and the substitution of this into Eq. (111-15) leads directly 
to Eq. (111-13). In general this approach, by-passing der- 
ivation of the adiabatic equation of state, is both simpler 
and more convenient. 

A somewhat different sound-speed formula is 
appropriate if the heat conduction rate is so great as to 
cause a uniform constant temperature to persist in the 
fluid; For a poly tropic gas, for example, constant temper- 
ature means a constant value of I, so that instead of Eq. 
(HI-11) we have 

dt bx dx 

(7-DP 

*> + u i". + (7-i)i dß_ = 
9t 9x p       3x 

The sound signal analysis then shows that the isothermal 
sound speed is 

C, s V(7-1)I    , 
in contrast to the result in Eq. (111-13). 

D. Expansion. 

We now are in a position to distinguish more pre- 
cisely between two basically different kinds of flows: the 
expansion and the compression. Together they form the 
elements of all the types of one-dimensional flow that can 
occur in the cylinder. The differences between an expan- 
sion and a compression are so profound that it is better to 
consider their properties separately. 

The simplest type of expansion occurs when the 
piston is rapidly withdrawn from a cylinder of gas that 
was initially at rest. Before the piston commenced 
moving, the gas density was p0, its specific heat energy 
was I0, its pressure was p„ = (7- l)p0I0, and its sound 
speed was c0 -■s/)f{j~ 1)10. As the piston moves, the gas 
does work on it, therefore giving up some of its heat 
energy. Additional heat energy is converted into the 
kinetic energy of gas motion. On both accounts, I, 
therefore, decreases in the vicinity of the piston. Corres 
pondingly, c decreases also. Thus one finds an expanded 
region of gas near the piston where the temperature, 
density, pressure, and sound speed are lower than the 
initial values, together with a region further down the 
cylinder in which no change has yet occurred. The region 
between these is called an expansion, or rarefaction, wave. 
In Chap. V we explore in detail the structure of this wave 
and show that its front travels with sound speed, c0, into 
the undisturbed gas. Notice that it follows from the 
qualitative discussion that any irregularity in the piston 
motion, producing a traveling sound signal, can never 
propagate to the front of the rarefaction wave because of 
the decrease in sound speed near the piston. 



E. Compressions and Shocks. 

In contrast, a compression wave is formed when the 
piston moves into the gas. The piston does work, produc- 
ing both heat energy (thereby increasing I) and kinetic 
energy. As a result, the sound speed near the piston is 
greater than c0. Suppose that the piston velocity in- 
creased with time through a succession of small jumps at 
closely spaced intervals. Each jump in velocity would send 
a new compression wave into the gas, each propagating 
faster than the one ahead of it. The result is a piling up of 
these compression waves in a manner not possible for a 
succession of expansion waves. (Each expansion wave 
would move more slowly than the one ahead of it, 
producing an ever-widening expansion "fan.") 

Where these compression waves pile up, the transi- 
tion from an undisturbed to a compressed region becomes 
virtually instantaneous, and takes place over a very nar- 
row span. This, then, is called a "shock." 

Formation of a shock closely resembles the forma- 
tion of a breaker when a wave runs up on a beach. In the 
shallow water ahead, the wave speed is less than in the 
deeper water behind. As a result the wave piles up more 
and more onto its front. When the front is steep enough, 
the wave crashes over, a type of relief not available to the 
piled up compression waves in the gas. Thus, the analogy 
ends when the breaker is formed. If, somehow, the break- 
er front could be kept from crashing over, then the 
analogy would persist and the vertical front of the wave 
would become as sharp a discontinuity as the shock in the 
gas. 

For a piston moving into the gas with constant 
speed, the gas between the piston and the shock is uni- 
form in all its properties. It moves with the speed of the 
piston, while the shock itself moves somewhat faster. In 
the limit of a very weak shock, the speed of its motion is 
just the sound speed, c0, of the undisturbed gas. Stronger 
shocks move faster than c0, and in the limit of a very 
strong shock we shall show that 

JL - 2. +  1 

is independent of the value of c0. Here vs is the shock 
speed, v is the piston speed, and 7 is the constant in the 
gas equation of state. Many other properties of shocks can 
be derived mathematically, and detailed compilation is 
given in Chap. VI. 

F. Contact Surfaces. 

Another type of discontinuity, the contact surface, 
can exist in a fluid. In contrast with a shock, fluid does 
not flow through a contact surface. If we were to form a 
contact surface in our cylinder of gas, we would observe 
that the gas moves with the same speed, and has the same 
pressure, on both sides. The density and specific heat 
energy (and thus the temperature) are then discontinuous. 
If the heat conduction coefficient is appreciable in the 

gas, the contact surface soon becomes smeared out into a 
region of transition between two states that still, of 
course, have the same pressures and velocities. 

A contact surface can be formed in our cylinder 
through the use of a diaphragm. Thus, a membrane is 
stretched across the cylinder, and the left side is pumped 
to a higher pressure than the other. The experiment be- 
gins when the diaphragm is broken. A shock proceeds to 
the right and a rarefaction "ravels to the left. Moving slow- 
ly rightwards from the initial diaphragm position is the 
contact surface. The apparatus is now called a shock tube. 
It is an instrument commonly employed for the creation 
of shocks that can be studied in detail as they interact 
with obstacles placed in their path. The theory of the 
shock tube is discussed in detail in Chap. VII, where it is 
shown how to predict accurately the entire flow pattern 
after the diaphragm has been ruptured. 

G. Three-Dimensional Flows. 

The idealized one-dimensional flow of gas in a cylin- 
der is a useful model for many significant circumstances. 
More often, however, we must be concerned with fluid 
dynamics in three space dimensions, and this introduces 
several matters not yet discussed. First, we introduce the 
possibility of large distortions: swirling, shearing, and 
slipping. Second, we allow for the meaningful considera- 
tion of incompressible flows. 

In the cylinder as so far considered, all motion is 
confined to move parallel to the axis, so that the distor- 
tions have been precluded, and if the fluid is incompress- 
ible, its motion is that of a rigid rod. Actually, of course, 
all three-dimensional effects are possible in a cylinder. If a 
partial obstruction is introduced, the flow around it can 
be grossly distorted. Even if the fluid is incompressible, a 
stirring action within the cylinder can set the fluid into 
complicated swirling. 

For such three-dimensional motions, the equations 
can be derived in much the same way. The velocity, u, 
now becomes a vector, u, with components in each of the 
coordinate directions. Equations (III-l), (IH-2), and 
(III-3) generalize to the forms 

9t +  (ü-v)p  + PVÜ, =  0 

ST + (u'v)u + pVp = 0  , 3t 

9E 
at 

(III-16) 

(111-17) 

+  (u-V)E  + -V(pu)  =  0    , (III-18) 

in which we have 

E = I+ ia-u. 

In analogy to the previous demonstration, we can also 
show that the Lagrangian time derivative (the rate of 



change along the general three-dimensional motion of the 
fluid) is 

df   .  df  .   ,* _,. 
dT= 3T+ (u*v)f 

and  the analogy  to  Eqs. (III-4), (III-5), and (III-6) 
becomes 

^ + pv-u = 0   , 

du,  1 
-r-  + -Vp  =  0 dt      p   r 

f +iv.(pü) = o 

(IH-19) 

(IH-20) 

(IH-21) 

From these can be derived identically the same adiabatic 
equations and sound-speed formulas presented in Eqs. 
(III-8) through (III-15), proving that those results are 
much more universally valid than was suggested. 

H. Incompressible Flows. 

When a fluid cannot be compressed, its density, p, is 
an absolute constant. The identity, p = constant, is thus 
an additional one'that would seem to overdetermine the 
unknown field variables. Actually, with an "incompressi- 
ble" fluid we mean that the pressure depends so strongly 
upon the density that small changes in the latter produce 
very large changes in the former. Tims, for example, the 
adiabatic equation of state for a gas, which can be put in 
the form 

■ o 
has this property if y is very large. If we put p = p0 into 
Eqs. (IH-19) and (111-20), they become 

V-u = 0 

du 
dt + -VP =  0 

(111-22) 

(111-23) 

Thus, we have three equations for the three unknown 
functions, u, v, and p. By means of the energy equation, 
Eq. (IH-21), the specific heat energy, I, could be found if 
desired, but it is not necessary to know this for the basic 
dynamical solution unless one adds terms to represent the 
effects of buoyancy. 

There are many ways to solve the equations of in- 
compressible flow. In more expanded form, these equa- 
tions for two-dimensional flow are written 

^ + & = 0 
9x      3y 

9u        9u ^    9u     a<4 

9v A     9v J 

at 
9v 

9x 9y      9y + !* = o 

(III-27) 

(111-28) 

(111-29) 

where we use 0 as an abbreviation for p/p0. One solution 
technique consists of eliminating <t>: differentiate Eq. 
(111-28) with respect to y and Eq. (HI-29) with respect to 
x. Subtracting the results then gives two equations in the 
two unknowns, u and v. Another technique is based on 
the assumption that 

M 

v = - 
9x 

in which i//, the "stream function," becomes the un- 
known. This assumption satisfies Eq. (HI-27) identically. 
A third approach, useful for veiy tiny motions of incom- 
pressible fluids, neglects the convective terms in Eqs. 
(111-28) and (111-29). Combining the resulting equations 
with Eq. (111-27), we can then show that 

9x2      9y2       °     ' 

a single equation in one unknown. Some of these solu- 
tions are given in more detail in Chap. Vlli. 

This gives enough equations to determine the solution. In 
two space dimensions, x and y, for example, with the 
velocity components u and v, respectively, we get 

^ +  & =  0 
9x       9y       U 

dt       P0  9x       U    ' 

dt      p0 9y 

(III-24) 

(HI-25) 

(111-26) 

I. Viscosity. 

So far we have neglected completely the viscous 
effects. In some cases, especially of high-speed gas flows, 
the effects of viscosity are negligible except very close to 
the surfaces of rigid objects. For incompressible flows, 
however, the viscous forces may strongly alter the pattern 
of flow. We do not here consider the full compressible- 
flow equations with viscosity; they are given at the end of 
Chap. IV. For incompressible flows, they modify Eqs. 
(HI-27), (111-28), and (HI-29) to the expressions 



3t      3y 
3u 
3t 

3v 
dt 

3u  .     3u  .   30 
Ur- + Vr- +  r21 

3x        3y      ox 

/32u x 32u\ . 

3v 3v      30 
3x 3y      3y 

(b2v A 32v\ . 

(111-30) 

(HI-31) 

3t     p0 3x0 

3u ,  3p      n 

p0 |§ + |2U = 0 
3t      3x„ 

(111-34) 

(111-32) 

where gx and gy are the components of gravitational 
acceleration. The use of these equations is illustrated in 
Chap. VIII, and their derivation is discussed in Chap. IV. 
For fully compressible flows, the full equations for 
viscous fluid dynamics are summarized in several forms 
at the end of Chap. IV. 

J. Lagrangian Coordinates. 

Equations (III-4), (III-5), and (IH-6) introduce the 
Lagrangian time derivative, defined to be the variation 
with time along the path of a fluid element. We can 
complete the definition of one-dimensional Lagrangian 
coordinates in the following way. Let x0 be the coordi- 
nate of a particular element of fluid at some reference 
time (t = t0). Then the value of x0 serves forever to 
uniquely tag that particular element. It serves, therefore, 
as a Lagrangian coordinate for that element and is forever 
constant in time. In this respect, it differs from the 
Eulerian coordinate, x, which varies with time. Indeed, x 
is generally a function of x0 and t, with the fluid velocity 
being given by u = 3x/3t, x0 held constant. 

Let p0(x0) be the density at Lagrangian position x0 

and at time t0. Then 

P(x) fe)t
="o(Xo) (IH-33) 

expresses the fact that the mass in any Lagrangian- 
coordinate interval also equals the mass in that interval as 
viewed from the Eulerian-coordinate viewpoint. This, 
then, enables us to complete the transformation to full 
Lagrangian coordinates for the one-dimensional equa- 
tions. For example, 

p 3x    p. 
.3jL 

o 3xo 

accomplishes this for the momentum equation. 
In one dimension, we shall have several occasions 

for using the Lagrangian forms, and it is useful to 
summarize them here: 

Usually, the analogous three-dimensional transfor- 
mation to Lagrangian coordinates will involve such a 
complicated Jacobian that no advantage is gained. 

K. Time Derivatives of a Volume Integral. 

Let A(r,t) be the density of some quantity; then 
there are two main types of volume integrals of X which 
will be of interest: 

and 

A(Eulerian) = / X(r,t) dr 
V 

A(Lagrangian) = J X[r(r0,t),t]dr0 

(111-35) 

The first is an integral over a volume V moving with the 
fluid. The second, in which X is reexpressed as a function 
of the Lagrangian coordinates, is an integral of X over 
some fixed initial volume. 

The time derivative of the Lagrangian integral is 
simple to perform; since each element of volume in the 
sum is constant, the derivative is 

dA(Lagrangian) 
dt 

(111-36) 

Using this, the time derivative of the Eulerian 
integral can be derived. We first transform it to a 
Lagrangian integral: 

A(Eulerian) = f     A[?0(?0,t),t) ^dr0   , 

where p0/p is the transformation Jacobian (whose form 
follows from the fact that p dr = p0dr0). Thus, 

dA(Eulerian) 
dt 



where all quantities in the integrand depend spatially on 
the Lagrangian coordinates. Now the mass equation, Eq. 
(III-4), can be put into the form 

M = p° Vü   , 

where the divergence is Eulerian. Thus, 

dA(Eulerian) _ f \\dX) A /P0\   . 

d(p0/p)    du 
at 3x„ = 0 

fr>ou + 3P = 0 

at     ax„ 

3p0E       3pu 

at       + 3x7 = 0 

(111-40) 

(IH-37) 

(HI-38) 

This type of transformation appears cumbersome at first 
but is sometimes extremely useful. Note the special case 

dT / pX dT s / p m"dT 

which follows from a similar derivation. 

L.  One-Dimensional Conservative Form. 

In one dimension,  the Eulerian equations can be 
written 

at       3x      U 

£*£(P.'T>-O 

apE , a ,  „ ~t + £ (puE + pu) = ° 

and the Lagrangian equations can be written 

(III-39) 

Equations (IH-39) and (111-40) are called the conservative 
forms. Integration of any one of them over a fixed space 
interval (Eulerian or Lagrangian, as appropriate) reveals 
the reason. Consider the Eulerian momentum equation as 
an example. With x, and x2 being fixed Eulerian 
positions, we obtain 

äf J pu dx - (pu2 + p)x=X) - (pu2 + p)x=;X2    . 

Thus, there is no internal contribution to the timewise 
variation of momentum in the interval; the momentum 
changes only if there are boundary fluxes. In this case, the 
boundary flux is composed of two terms. The transport 
term, pu2, measures the rate at which momentum is 
carried by the moving fluid; the force term, p, measures 
the acceleration due to external pressures. 

The conservative equations are all of the form 

at     ax    u 

in which A is a quantity per unit volume and B is its flux. 
If F(x,t) is any arbitrary function of its arguments, then 

»-IF 

is the most general solution of the equation. Now 

B dt - A dx    . *-!?*♦£* 
Since dF is a perfect differential, its integral around any 
arbitrary closed path in the x-t plane is zero. Thus, 

£(Bdt-Adx) = 0 
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This equation is equivalent to the original one. Thus, the 
one-dimensional Eulerian equations in integral form are 

f (pu dt - p dx) = 0 

i [(pu2 + p)dt - pu dx] = 0 

f [(puE + pu)dt -pE dx] = 0 

and the Lagrangian equations are 

Po 
#(udt + — dxo) = 0 

#(pdt-poudxo) = 0 

#(Pudt-poEdxo) = 0 

(III-41) 

(IH-42) 

These equations in integral form are useful in the 
derivation of shock relations, since they hold even if the 
field variables are discontinuous. 

A A A 

and z. We are thus concerned with finding Vr, V0, and 
Vz. In general, in cylindrical coordinates, 

*-»*♦» 
1 df[ 
r  30 

+ z 
dri 
3z 

where the order of vectors is preserved throughout. Thus 
we must find, for example, 3r/30. A graphical approach 
(see Fig. III-l) will be illustrative. TheAvector r2 - r, 
points approximately in the direction of 6 (and will do so 
exactly as 02-0i -+0). Also, r2-ri has limiting magni- 
tude (02-0i) timesAthe magnitude of r2 or r\. Thus 
C?:-r,)/(02-0i)«0 and 3r/30 =0. Similarly, the oth^r 
appropriate derivatives may be found, and V? = (1/r) 0 0, 
W=-(l/r)0r,Vz = O.Thus, 

Ü • [(ß-V)0] = 
uru0 

and the component equations of motion are: 

M. Other Coordinate Systems. 

' The equations for a particular problem can often be 
simplified in form if a coordinate transformation is made. 
Various compilations have been given of the equations in 
the more common coordinate systems (see, for instance, 
Pai). 

A convenient starting point for transforming coordi- 
nates is the set of equations in general vector, Eulerian 
form. Consider, for example, the momentum equation: 

3u 
at + p(u-V)u = - Vp 

If rj is one of the three unit vectors of some curvilinear 
coordinate system, then the dot product of tj with the 
equation will give the appropriate component equation in 
the desired system: 

3^ 

3t 
pr?-[(ü-V)ü] = -—£ 

aXj? 

where u^ is the component of velocity in the direction of 
0, and dx- is the change in distance along a path in the 
direction of JJ- NOW 

a.[(" -V)ü] = (a -VX^-U-Kü-V)*}]   . 

The second term on the right vanishes only if T) is a 
constant everywhere. Although r\ is always constant in 
magnitude, it is not generally constant in direction, and 
the second term does not vanish 

As an example, consider the transformation to 
cylindrical coordinates. The three unit vectors in tlje 
radial, angular, and axial directions are, respectively,?, 0, 

au^ 
p at + p(u-V)ur 9 r 3r 

(III-43) 

Fig. III-l. 
A schematic to help visualize the transformation of 
the basic equations to cylindrical coordinates. 
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dufl uru 
P   3t   + P(ü'V)u0 + p — 

3u„ 

e       13p 
r de 

, (111-44) 

P jjp + P(u -V) ä-V)»,--g 
^    (HI-45) 

The term -pufl
2/r contributes the centrifugal effect, while 

puru0/r is the Coriolis term. 
Notice one aspect of these equations related to 

conservation of momentum. If ue = 0, then Eq. (111-43) 
becomes 

Dur _ _ 3p 

Dt 3r 

dr    , 

Thus   _r 

/    p  Dt /     9r 

where dr is the element of volume of a cylindrical shell of 
length L. Thus 

/      Po^-dr0=-2nL        r |f dr    . 
■Vo ■'r, 

Define the mean radial speed, ür, of the shell contained 
between r( and r2 by 

/ri.o 

'1.0 

PourdTo  = m nr      - 

where m is the shell mass. Then 

m dr 

(PA)inside ~ (PA)outside  + 27rL /      pdr    , 

where A is the surface area of the inside or outside of the 
shell. Thus, the acceleration of the shell is produced by 
more than the difference between the external forces; 
even if these vanish, the internal pressure within the cell 
causes its radial acceleration. This illustrates that radial 
momentum is not necessarily conserved by the pressure 
forces. One can show, incidentally, that this quantity is 
conserved by the convection terms. 

N. The Equations for a Fluid with Nonlocal Forces. 

If each element of fluid is subject to forces exerted 
by other than its immediate neighboring elements, addi- 
tional terms are required in the equations. (Such forces 

would be present, for example, in a gas with net electric 
charge or one acted upon by an external gravitational 
field.) The mass equation remains unchanged by such 
forces. If the force per unit mass (the acceleration) is g. 
then the momentum equation becomes, in Eulerian 
coordinates, 

Pi 
at + (u-V)u 

P
VP

 
+ 8+ (111-46) 

The rate at which work is done by the external force on 
the element is u-g. Thus the energy equation becomes 

dE 
^ + (u-'V)E = - Vpu) + M   . 

(1H-47) 

A combination of these two equations shows that the 
changes of energy go directly into kinetic energy, the 
internal energy equation being independent of the ex- 
ternal force. 

0. Thermodynamic Properties. 

The first law of thermodynamics relates the heat, 
dQ, added to a fluid element to the changes of internal 
energy and density as follows 

dQ = dl - £. dp    . (111-48) 

For adiabatic flows, Eq. (III-8) shows that dQ = 0. In 
addition, the second law of thermodynamics states that 
the change in entropy, dS, is related to the temperature, 
T, and the heat change by the equation 

TdS = dQ    . (III49) 

For many gases, the internal energy is proportional to the 
temperature, with a constant specific heat coefficient, b, 
such that   ' 

(111-50) I = bT   . 

For such gases, 

dQ = bdT» J dP = bdT + pd (j-) 

Accordingly, we see that b is the specific heat at constant 
volume. Furthermore, for a polytropic gas, we can write 

1 = (y - l)bT 

P . P 
so that, when the pressure is constant, 

dQ = 7bdT    , 

and we conclude that 7b is the specific heat at constant 
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pressure. It thus follows that y can be interpreted as the 
ratio of the specific heat at constant pressure to the 
specific heat at constant volume. In the nomenclature of 
most authors, 

7 = cp/cv     . 

As one further step, we may find an expression for 
the enlropy of the gas. Eliminating T and I, we obtain 

dS _ dp _ ydp 
b        p p 

which is immediately integrable to show that 

-(<"£) 

S S() + b Bnfe) (111-51) 

with S0 being a constant of integration. Note that for 
adiabatic flows, in which p/p? = constant, S does not 
change. 

It is essential to observe that these entropy deriva- 
tions all involve Lagrangian derivatives, so that these 
conclusions relate to the properties of a particular 
clement of fluid, wherever it moves, rather than to fluid 
properties at a fixed point in space. Even for adiabatic 
(lows, the value of the entropy may vary from element to 
clement and, hence, may vary at any fixed point in space 
as the fluid flows by. 

For most of our fluid-dynamics investigations, the 
entropy concept becomes particularly important when we 
attempt to solve the equations by finite-difference numer- 
ical techniques. It is then that we encounter the phenom- 
enon of numerical instability, a common unphysical 
phenomenon in which the velocity and other field 
variables "spontaneously" develop fluctuations. This 
process is equivalent to the destruction of entropy. Thus, 
a knowledge of how real fluid processes (such as viscous 
effects and shocks) tend to increase entropy is of 
considerable value in devising means for counteracting the 
destructive action of the numerical instability. 

For fluids, the concept of entropy can be described 
in the following several ways. 

1. Entropy measures the amount of smoothing that 
has taken place; that is, the amount of decay from a 
structured configuration to a more uniform configuration. 

2. Entropy measures the excess amount of heat 
generated in a process beyond that which can be 
recovered as work done by adiabatic expansion. For 
example, consider an insulated cylinder of gas that is to 
be compressed by an insulated piston. Slow compression 
heats the gas, while reexpansion to the original pressure 
brings it back to its original temperature, and all the 
stored energy is retrieved. Fast compression, however, 
produces shock waves that result in excess heating (hence 
an increase in entropy). Reexpansion back to the original 
pressure leaves the gas at a higher temperature than 
originally present, so that not all input energy has been 

retrieved. 

3. The above descriptions can be combined. A fluid 
with velocity fluctuations (a structured configuration) has 
more kinetic energy than one with a smooth velocity 
profile at the same mean value (thus with the same 
momentum). This is because kinetic energy is propor- 
tional to the square of the velocity, so that the high- 
velocity fluctuations carry a greater increase in kinetic 
energy than what is lost by the low-velocity fluctuations. 
(For an example with numbers, note that, although the 
average of 3 and 5 is 4, the average of 32 and 52 is greater 
than 42.) Because of viscosity, the natural tendency is for 
the velocity structure to be smoothed in a manner that 
conserves momentum. Accordingly, the kinetic energy 
decreases and the internal energy (heat) must increase. 
This dissipation into excess heat is thus directly related to 
the description in item 2 above. 

4. Finally, for completeness, we note that entropy 
is created in a shock, as discussed in Chap. VI, but not in 
a rarefaction. A shock causes an element of fluid to 
change suddenly from an initial state to a compressed 
state in a way that completely conserves total energy, 
momentum, and mass. The final distribution between 
internal and kinetic energies is not determined by the 
conservation laws. If, however, we specify that there are 
to be no velocity fluctuations behind the shock (a 
specification required by the absence of any significant 
length or time scale in the process) then, as we saw 
before, the final state contains its maximum possible 
entropy, and calculations (presented in Chap. VI) show 
this to be greater than the initial entropy. 

P. Characteristics. 

One of the most powerful methods for examining 
the properties of the one-dimensional hydrodynamic 
equations is called the method of characteristics. As an 
example of its application, consider the problem of 
solving the one-dimensional Eulerian equations for a 
simple gas in adiabatic motion: 

3u 
3t 

+ pu 
3u 
3x 

dp 
at 

4.     aP - + Uäx" = 

= - c 

3u 

dp 
ax 

3x 

(111-52) 

The sound speed, c, is a function of the density only, so 
that we may introduce a new function, a, defined, to 
within an arbitrary constant, by 

da 
9 

(111-53) 
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Then Eq. (Ul-52) becomes 

3u ,     au ,     do 
3x 3x 

3t  + u 37 + c — = 0 3x 3x 

where c is now considered to be a known function of a. 
By summing or differencing these equations, one obtains 

£(u + o)+(u + c)£(u + o) = 0-, 

-^(u-a) + (u-c)^(u-a) = 0   . 

(111-55) 

From the first equation, we can see that along a line in 
the x-t plane such that dx/dt = u + c, the quantity (u + a) 
is a perfect differential and the equation can be inte- 
grated. With a similar result from the second equation we 
may write 

u + a = constant, along 5? = u + c  , 

dx 
u-0 = constant, along j^-= u-c 

(111-56) 

These are the characteristic solutions, and the families of 
lines dx/dt = u± c are called the characteristic lines, or 
simply, the characteristics. 

These characteristic solutions are not, in general, 
complete; they do not necessarily allow the features of 
any applicable flow field to be determined directly. They 
are,  however,  extremely   powerful   aids  in  obtaining 
solutions in certain special cases, or in cases where parts 
of the solution can be obtained by other means. As an 
example  of the   use  of the characteristic solutions, 
consider the problem of determining the effect on a gas, 
initially at rest, of a piston being withdrawn from it (see 
Fig. HI-2). Up to t = 0, there is a piston at x = 0, and gas 
at rest for x > 0. At t = 0, the piston commences to move 
with uniform velocity, u_, in the negative x-direction, and 
a sound signal proceeds into the gas. We now attempt to 
connect the sound signal and piston-path lines with a 
family of characteristic lines. The line dx/dt = u + c is of 
no use,   since u = 0 along the sound signal, and that 
characteristic lies along the signal line. The line dx/dt = 
u-c, on the other hand, has negative slope at the sound 

signal line and, hence, intersects it. Furthermore, this 
characteristic has negative slope throughout the flow field 
between the sound signal and the piston path, because 
u<0 and c>0. Also, the slope is more negative than 
that of the piston path, assuming that c # 0 anywhere 
within the flow field of interest, so that each character- 
istic dx/dt = u-c will also intersect the piston path. Thus 

or, since u0 = 0, 

aP = uP + 0o (IH-57) 

(111-54)       For a polytropic gas, for example, o = 2c/(y-]), so that 

CP " T UP + co       • 

Since up<0, the sound speed is less than c0 at the 
piston; the more negative the piston speed, the smaller 
would be the sound speed there. This fact makes plausible 
the assumption that c#0 in the flow field, with the 
exception being the case in which c_ = 0. If the piston is 
withdrawn any faster than the critical speed at which 
cp = 0, then the gas cannot follow; a vacuum occurs 
between the escaping gas front and the piston. This 
critical piston speed-called the escape speed of the gas-is 

u escape 
2c0 

7-1 (111-58) 

Note that cp is independent of time, simply because up 

and c0 are independent of time. This is because it does 
not matter where the two intersection points are along 
the sound-signal and piston paths. 

The method of solution is also valid if up varies 
with time, as long as a shock does not interfere with the 
characteristic line. If, however, the piston velocity persists 
for sufficient time at values less negative than any which 
it has previously attained, then a shock is quite likely to 
form. 

An interesting generalization of this problem can 
also be solved by the method of characteristics. Suppose 
that the piston is replaced by a wall which has mass per 

.<" 
**• 

/\ SOUND 
SIGNAL 

\   CHARACTERISTIC 
\ ^    LINE 

\ 
\ 

Fig. III-2. 
Characteristics in the x-t plane in the withdrawn 
piston problem. 
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unit area m. Up to t = 0, the wall is held fixed at x = 0; it 
is then released and moves away because of the gas 
pressure exerted on it. What is the history of its motion' 
Let subscript w refer to conditions at the movable wall 
Then 

m 
duv 

dT 

The characteristic equation, Eq. (111-57), is again appli- 
cable; in terms of sound speed, 

u.„ - 
- I (

cw - co) 

Now, 

V 

Id 
27 

so that wc now have three equations for determination of 
Hie three unknowns, uw, Pw, and cw. One constant of 
integration is to be determined in the solution; for this we 
specify that uw = 0 at t = 0. Then the solution, after some 
manipulation, is found to be 

2c„ 
uw  = , - s  vy+1/ 1  - a 

Pw   =   Po 

=  c0ä~W   , 
where 

ä = 1  + 
(^) (^) 

Thus as t - 00, uw approaches the gas escape speed; the 
wall mass aftects only the rate at which the final speed is 
approached. 

Q. The Bernoulli Function. 

Characteristic theory asserts the constancy of cer- 
tain quantities along the characteristic (sound-signal) lines 
in problems involving one space dimension and time The 
theory can be generalized to problems in two or three 
space dimensions, but the details are not presented here. 

A similar constant of motion exists whose signifi- 
cance, however, is best seen in fully three-dimensional 
problems. To reveal this, we need to specialize to steady 
low. in which the luilerian time derivatives vanish Then 

l.qs. (111-16) and (111-18) can be combined to show that 

ii-V(E + p/p) = o    . 

The interpretation of this result for steady flows is that 

along any streamline (a line everywhere parallel to u ) the 
value of E + p/p is constant. Recalling the definition of E 
we can define the constant Bernoulli function B such that 

B s M ■ u + I + p/p (III-59) 

In general, the value of B will vary among streamlines; in 
special cases it may have the same value everywhere in the 
flow. 

We state without proof (see Courant and Friedrichs 
p. 300) the important fact that the Bernoulli law holds 
even if the streamline passes through a shock, as long as 
the flow is steady. Those authors also show a variation of 
the Bernoulli law that holds for nonsteady flows. 

An example of the application of this result is to 
the determination of stagnation properties at the blunt tip 
of an object in the supersonic flow of a cold polytrooic 
gas. For such a gas, • 

Thus, if the far-upstream flow speed is u0, then B = u2/2 
since, in the input flow, I = 0. At the stagnation point,°the' 
flow speed is zero, so that the value of I at that point is 
given by 

l» = — u 
s      27    °     • 

Indeed, this is the maximum value that I can achieve in 
the flow. If the specific heat of the gas is known, then the 
maximum surface temperature can be computed. 

Many other uses can be found for the Bernoulli law 
some of which will become apparent in succeeding 
discussions. 

R. Simple Waves. 

v    ÄPT that in some re8ion of the x"1 Plane (see 
Fig. III-3) the flow field is in a constant state: u = u 
o=a0 everywhere within the region. The constant-state' 
region can be bounded above and/or below by regions in 
Ä-*L "ow

u
fie'd is not constant. The boundary lines 

W.11 either be shocks, or they will be straight character- 
istics. If they arc not shocks, the boundaries of the 
nonconstant regions (the disturbance boundaries) will 
propagate into the constant-state region with sound speed 
relatwc to the material and, thus will have slope 1. ± c 

being, therefore, straight characteristics. °      °" 

tu . JhV110St imP°r,ant f;,ct< now to be established is 
that the flow in the adjacent regions will always be of a 
particularly simple form. Consider first the lower non- 
constant region. Through it will pass the family of 
characteristics dx/dt = u-c, which, at the disturbance 
boundary, have slope Uü-c0, and hence intersect it as 
long as c0 ^ 0. Along each of these characteristics u-a is 
constant; indeed, u-a will be the same constant for all 
members of the family of characteristics which intersect 
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NONCONSTANT  REGION 

/dx/dt=u0-c0 

NONCONSTANT 
REGION 

dx/dt = u0 + c0 

t 
Fig. II1-3. 

Characteristics in the x-t plane for a region con- 
taining constant and nonconstant regions. 

the disturbance boundary, since along that boundary the 
constant is u0-a0. Thus, throughout the region adjacent 
to the region of constant state, u-a will be one fixed 
constant. Likewise, one can prove that, throughout the 
nonconstant region above the region of constant state 
u + a will be one fixed constant. Any region in which 
u.+ o or u-a is a fixed constant throughout is referred to 
as_ the region of a "simple wave." The extent of the region 
of a simple wave adjacent to a region of constant state is 
limited by the requirement of contact with the disturb- 
ance line through a characteristic. 

In the case that c0 = 0, no infinitesimal disturbance 
can propagate into the constant-state region; any wave 
propagating into the region must, therefore, have finite 
amplitude at its front. Such a discontinuous disturbance is 
a shock and requires separate treatment. 

Consider now the example of a simple wave propa- 
gating in the positive x-direction into a constant-state 
region in which u0 = 0. Then 

u-(?=-a„ 

and the two expressions of Eq. (111-54) become the 

So      , ha 

which has the general solution 

ff=F[x-(o-o0 + c)t] 

or 
o=F[x-(u + c)t]  , 

u = a-a0 , 

where F is an arbitrary function of its argument. 
As an example of the use of this solution, consider 

the problem of determining the motion of a polytropic 
gas disturbed by a piston. It is assumed that up to t = 0 
the piston is at rest, so that a semi-infinite region of 
constant state, with u = 0, a=o0> has been established. 
Subsequent to t = 0, the piston moves with prescribed 
velocity u(t) to positions x(t) (such that v = dx/dt) For a 
polytropic gas, a = 2c/(y-l), so that Eq. (111-60) can be 
written as 

or 

and 

Ü5L 
7-1 

2c 
7-1 

+ u 
(<o + *±-U 

7 + 1    / 2c„   \ , (HI-61) 

u = _    2 
FT(C-CO) 

Thus, the function F is to be determined by substituting 
into Eq. (III-61) the known conditions at Use piston 

2c o 
7-1 ~ = F( - cot)       t < 0 

±2. 
7-1 

+ v= F 
(«.♦HH' 

(IH-62) 

t >0  ' 

and F(0) lies between 2cJ(y-1) and 2c0/(-y-l) + „. 

1. Example I. The problem of withdrawal of the 
piston at constant speed was partially solved earlier [Eqs. 
(IH-57), (III-58)]. Here we may solve it completely. (The 
same problem is solved more easily in Chap. V. We use 
this method here for illustration, because of its power for 
more complicated problems which cannot be treated by 
the procedure of Chap. V.) In this case, v is a constant 
(v <0) and x = ut. From Eq. (HI-62) 

F(?) 

F(l) 

2c. 
S>0 

2co 

same,      where £ is any argument of F. 

This solution, put into Eq. (111-61), becomes 
2c 2C

Q 

7  «""-^T («-&).>■> 
2c 2c 

(111-60) 
7-1      7-1 

+ v '(111-63) 

forx-2±J   /,-       2co   \ 
7-i \c-7T7,M<o 
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or 
c = c„ 

ZC 
2e„ 

7- I      7-1 
+ v   for x < 

for x > c0t     , 

t. 

(111-64) 

The first statement says that the signal propagates with 
sound speed. The second one states that, between the 
piston and the path given by x = |c0 + [(7 + l)/2]u}t, the 
sound speed is a constant, and the result is identical to 
that in Eq. (111-57) for conditions at the piston. (Note 
that, if v =—[2cJ(y—1)], which is the escape speed, then 
the thickness of the constant-state zone next to the piston 
is zero, since both boundaries move with piston speed.) 

Finally, in addition to Eq. (111-63) we have 

JSft. + v < *L< J£a for x-211 L- 25a.\t = 0 
7-l 7-l     7_i 7_i    \   7+1/ 

or 

- y~l (2c° + *\ 

and, from Eq. (HI-61), 

u=TTr(f-co) 

forc0+I±iu<^<c0 

(III-65) 

2. Example II. From Eq. (HI-61) may be calculated 
the instantaneous slope of the function c(x,t): 

3c 
3x 

(7-l)F' x-7_±l/c_iM 
7 -1 r 7 +1 / 

2+ (7+ l)t F'h-1 

=T(c-7-^iT 
(III-66) 

where F' means the derivative of F with respect to its 
argument. Thus, if F(x) has negative slope at any time, 
the denominator may eventually vanish, and the result is a 
shock. 

As a specific example, consider the problem of 
determining the effect of a uniformly accelerating piston 
moving into the gas. In this, with acceleration a, 

u=at   , 

x = !4at2   , 

and Eq. (111-62) becomes 

2c„ 
m = ~j   *>o, 

Fp-(c0+I±ikt)t 
7-1 

(111-67) 

+ at      t > 0 

We set the argument of F equal to £ in the second 
equation of Eq. (III-67) and solve for t: 

t = -£ + r^ yj'o-W    > 

where the sign has been chosen such tathat t = 0 when 
1 = 0. Thus 

m) = £ + 1     j   \ 
-l)Co+7 V c; - 27a| 

2c. 

Fa) = Fr 

% < 0 

?>0 

(in-68) 

Combining this result with Eq. (III-61), we obtain 
2c 7+1 

7-1      7(7-l)C°+7 

J^f^fM] •x < ^ 

7-1 x >c t o 

(III-69) 

(The condition x < c0t in the firrt equation follows from 
the condition x-(7+ l)/(7-l){c-[2c0/(7+ l)]t t <0. 
This can be verified by noting that at the point x = c0t, 
c = c0 in the solution that follows.) The equations (111-69) 
can be solved for c: 

'■|W^  
c2

o + (7 - l)a c0t - 27ax + (^f a
2t2 

x < c t o 

c = c x>cot 

(111-70) 

(As a check on this solution, it may be noted that at the 
piston, where x= Vi at2 , Eq. (IH-70) gives 
2c/(7-l) = 2c0/(7-l) + at, being the result obtained 
previously--see Eq. (111-57). which is perfec*' .'id for a 
piston speed varying with time.) 

The envelope in the x-t plane, of values such that 
the square root vanishes in Eq. (IH-70), is a path of 
particular interest. Along it, dc/9x is infinite so that the 
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path defines a shock, whose position xs(t) is given by or with x held constant, 

x.«-£ + (7-l)acot + (m)2aV (111-71) 

T9hiS//S
J

V?lid'J10WeVer' °nly for xsW, or for t> 2c0/(r + l)a. Hence a shock forms at time and position 

2c. 
h' 

2ci 
(7 + l)a xs = 

(7 + l)a (111-72) 

hd!Z   K   Iv    ly, Wf Spe6d C- The S0,Ution cannot> however, be believed after the initial formation of the 
shock, since thereafter the flow pattern is no longer that 
of a simple wave. 

0 = xo°t+xuut    • 

Two more independent relations of this kind can be 
derived; we write them in the form 

0 = xu»x+tuat   , 

0 = Utta+«xXa    • 

These four relations can be solved for derivatives of u and 
a: 

1     Det 

"x     Det 

(111-74) 

Det 

S. Inversion of the Equations, 

«„.a»-EVen {OT?Jimi?}e' isentr°Pic gas, the hydrodynamic 
equations are difficult to handle in complete generality 
lne complications arise mainly from nonlinearity of the 
equations. One means of circumventing the difficulty is 
by the method discussed in this chapter (sometimes called 

JnrorÄ
Phmeth°d)- The hod°g'aph transformation 

for steady flow is part of a very similar method. 
We start with Eqs. (IH-54); again the gas is assumed 

to be simple and the motions adiabatic 

äü+du.    bo   n 
3t+u3x+e3x- = 0 

<to .    3ff .    du 
3T+V+C8x- = 0 

(ffl-73) 

To remove the nonlinearity, these are transformed to a set 
of equations in which the dependent variables are x and t 
and the independent variables are u and o. The resulting 
equations are then linear and homogeneous and are thus 
amenable to treatment by more familiar methods. 

= (hl*\   in,roduce    the   shorthand   notation   x 
l0X/do)u=constant etc., in which partial derivatives of x 

or t with respect to u or o are taken with consideration of 
x and t being functions of u and a, and vice versa For 
example: 

dx = x„do + xudu 

so that, with t held constant, 

l=xa°x+XuUx 

x       Det 
where 

Det = xatu-xut0 (IH-75) 

Validity of the transformation requires Det =£ 0. 
nn^uh   theSe   transformation   equations,' the   Eqs. 
(HI-73) become 

3x _ 
3a     U do 

3x 
3u 

at. 
do 

at 
Tu 

it 
:3u 

Pi 
do 

(111-76) 

Since c is a function of o only, these equations are 
linear and homogeneous in their dependent variables 
Worn these two equations, x can be eliminated- 

Ü1 
3u2 

alt 
do2 i (1+^)31 

c da 'do (HI-77) 

A similar equation for x can also be obtained, but it is not 

lS C on ™The amount of difficulty involved in solving 
ni SUl} ,^?nds Upon the nature of the unction 
U/c)ll+(dc/da)], which, in turn, depends upon tho 
form of the equation of state. For a polytropic gas, for 
example, r    e   ' 

''9ll _ öfj _ (y+\ \ 1 
3u2      do2"   \y-\)ä 

PL 
do (111-78) 
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Even simpler is the equation resulting from the equation 
of state 

p = a 
P (IH-79) 

where a and ß are constants. (Such an equation of state 
may be useful if a very small range of densities is involved- 
then Eq. (111-79) may fit the true equation of state 
sufficiently well over the range of interest.) The form of 
Eq. (111-77) with the Eq. (IH-79) is 

3u2 SÜ1 
3a2 

the simple wave equation, which has the general solution 

t = Cl(u + 0) + C2(u-a)   , 

where C, and C2 are arbitrary functions of their argu- 
ments (arbitrary, that is, except for the restrictions 
imposed by continuity and nonvanishing of the trans- 
formation determinant). The corresponding solution forx 
is 

/U+O ,-U-tt 

where K and the lower limits of the integrations are 
arbitrary constants. With this solution Eq. (111-75) be- 
comes 

Det = - 4c 8', ß2 

which must not vanish if the transformation is to be valid 
Returning to Eq. (IH-78), we make the substitution 

In this special case, c = a. 

mi nP* Solution for x follows from Eqs. (HI-75) and 
(III-76), either directly or through the following trans- 
formation: 

y = x-ut, 
z = ot 

Then, for a polytropic gas, 

9y_ __7-l dz 
oo 2   9u 

9y __ 7-1 3z    z/7-3\ 
on 2   do    o\   2 ') 

7 = - 
2n + 1 
2n-l 

t = 

Then, for integer n > 0, the most general solution is 

.(±+±Yi riiiu±£)i 
V9u     3a/       L      °n      J (111-80) 

+(±_A\n-1 fkl£ZJZil • 
\9u     do/       L      a»      J 

where C, and K2 are arbitrary functions of their argu- 
ments. The special cases of a monatomic gas 
(7 - 5/3, n = 2) and a diatomic gas (7 = 7/3, n = 3) are 
covered by this solution. The fictitious case, 7 = 3 (n = 1) 
lias a particularly simple solution 

t = - [«, (u + 0) + 22 (u - a)]     . (HI-81) 

For 7-3, these become particularly simple, and the 
solution is Eq. (IH-81) together with 

or 
y = -s, (u + 0) + s2(u-0) 

x = ut-8,(u + o) ±C2(u-0) (111-82) 

A useful form of these general solutions, which follows 
directly from Eqs. (HI-81) and (IH-82), is 

u + o = F[x-(u + 0)t] , 
u-0 = G[x-(u-0)t] . 

(IH-83) 
(111-84) 

Here F and G are arbitrary functions of their arguments 
(It should be noted that Eqs. (IH-83) and (HI-84) can be 
derived simply and directly from the original equations as 
a direct consequence of the fact that for 7 = 3, 0 and c are 
identically equal. For 7 = 3 the one-dimensional Eulerian 
equations are 

or 
^-+1I3H-       3O      3ffA    do du 
at+uax—a^ ' 37 + u3r-°äx- 

gr(U±0)   +   (u±0)A(u±a)      =      (J 

The general solution of this pair is seen to be u 
± 0 = F+[x-(u ± 0)t]. A directly analogous derivation for 
any other value of 7 is not possible.) 

Example: Expansion into a Vacuum 
Initially the gas is at rest; for x <0, there is 

vacuum, for x>0 there is gas, The value of 7 is 3 0 
Define 

H(x) = 

» 

0 

0 < H(x) < 1 

x<0 

x> 0 

x =0 

(HI-85) 
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and let a be a fixed constant. Then, at t = 0, 

a = a H(x) 

u = a[H(x)-l] 
(111-86) 

The form of u follows from the fact that the motion is 
that of a simple wave in which u-o has everywhere the 
same value. Combining with Eqs. (111-83) and (III-84) we 
get 

u + a = aJ2H[x-(u + o)t)-l[, 

or 
u-o =-a 

u + o> — 

u + a< 

u + a = 

for u + a =- a , 

for u + a = a , 

for—a < u + a < a 

which seems a strange way to express the solution, but 
this can be transformed to the equivalent, more farnilinr 
form 

u-*(f-a) 

a =«,*(* +a) 

for— a < — <; a 

for the region of the rarefaction wave. In particular, at 
x/t = - a, u = - a, the "escape speed," 

It is also strange that the final solution depends 
upon the nature of the velocity profile in the vacuum in 
Eq. (111-86). Had we taken u = 0 at t = 0, the final result 
would have been meaningless. 

Considerable additional discussion of this method 
has been given by von Mises, by Courant and Friedrichs 
and by Landau and Lifshitz. 
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IV. Fluid Dynamics from the Molecular Viewpoint 

A. Derivations. 

Derivations of the fluid dynamics equations often 
follow the procedure discussed in the preceding chapters. 
These are far from satisfactory, however, because they are 
not rigorous and because they obscure the physical origin 
and meaning of such fluid properties as pressure vis- 
cosity, and heat conduction. 

A complete treatment from the molecular view- 
point is extremely complicated, but a simplified version 
can overcome most objections to the usual derivation 
techniques. Such a treatment is given here, hopefully to 
afford insight into the properties of simple fluids and into 
the fascinating dynamical contortions they can eo 
through. 6 

The first steps in the derivation always seem to be 
the most difficult - they are the accurate definition of the 
molecular distribution function" and the derivation of 

its transport equation. The difficulty lies in the fact that 
the transport equation looks too simple to be the 
complete basis for all that follows, and we must resist the 
temptation to put into it terms and factors that do not 
belong. 

The distribution function, N, is a function of 
position, velocity, and time, all considered to be com- 
plete^ independent variables. For the purpose of describ- 
ing the behavior of this function, it is useful to introduce 
index nomenclature, and to discuss briefly the rules of 
manipulations that are required for our purposes. We label 
the three coordinate directions x, y, and z, by numbers 1, 
I, and 3: ' 

x = x,    , 
y = x2   , 
z = x3   . 

The components of velocity in these three directions are 
ui, uj, and 113, respectively. In general, Xj and uf can have 
subscript j equal to 1, 2, or 3. We shall sometimes use i or 
k as subscripts and, again, the same range of possible 
numbers is implied. Whenever the same subscript appears 
twice m any term, it is implied that that term is summed 

ZZfn 
POfp Val,UeS °f *' SubscriPt <■*" summation convention). Examples are 

UjXj = U,X1 + U2X2+U3X3    , 

9uj_     du, du2 3u3 uj =u, +u2 +u3  
3*k       3xk dxk dxk 

"j2=u,2 +u2
2+u3

2       . 

These repeated subscripts are called dummy subscripts 
lhey can be changed arbitrarily without altering the 
meaning of a term, for example, 

3u:        du; 
U;—Is«, L 

3xt 3xt 

u, 
duk 3uk 

dxi 
■ = Ui 

9xi 
• + u. 

3x5 

• + u 
3uk 

1 

3xi 

Any subscript that appears only once in a term must also 
occur in every other term of the equation. For example: 

32u: 
3U: 

3t 

3uj      dy 
■ + uk = + ü —L 

3xk     3X:       dXj
2 

In this example, which is the momentum equation for a 
viscous, incompressible fluid, the nondummy subscript i 
appears m every term; but k and i, which are dummy 
subscripts, imply summation for each of their terms and 
00 not have to appear consistently throughout. A term 
with no nondummy subscripts is a scalar; with one 
nondummy subscript it is a vector. The presence of two 
or more nondummy subscripts identifies a tensor of 
second or higher order. In any equation, all terms must be 
01 the same type, a corollary of the requirement that the 
same nondummy subscripts must appear in all terms 

The special simplified version of molecular dynam- 
ics that we develop is that of a set of molecules which 
have interactions so weak as to contribute negligible 
mean-flow forces, and which have no internal degrees of 
freedom that can absorb energy. Then the only energy a 
molecule can possess is its kinetic energy of motion: 

mK = ^mUj2    , (WI) 

where K is the kinetic energy per unit mass of the 
molecule with mass m. 

We now define the distribution function in such a 
way tnat 

■i 

NfXj's.uj's.OdTxdTu 

is the probable total number of molecules at time t in the 
spatial volume drx = dx,dx2dx3, in the velocity interval 

tlC\?Ul    2    3'  al P°Sition  x" X2' x3'  ^d  with 
velocity u,, u2, u3. N is a function of all these variables 
2?i T"! emPhasized that all of them can be' 
ndependently specified. That is, given an arbitrary 

specification of position, velocity, and time, the distribu- 
tion function gives the probable total number of mole- 
cules with those properties, per unit spatial volume per 
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unit velocity interval. 
The distribution function is not as familiar a 

quantity as the density or local mean velocity, but these 
latter field variables, and others, can be determined from 
the distribution function. For example, 

p = m NdTu = n,/    /     / Ndu,du2du3  .    (IV-2) 
■/-oo-'-oo J- ÖO 

This shows that density of the gas is determined by 
summing the probable number over all possible velocities 
that molecules can have. This gives the probable total 
number of molecules per unit spatial volume, regardless of 
their velocities, and multiplication by the mass per 
molecule gives the density. 

To define the average velocity, we require that its 
product with the total mass per unit volume (the mean 
momentum) be equal to the true momentum of the 
molecules. Accordingly, 

püj=mJujNdru , (IV-3) 

and Ti: is what we have been calling the "fluid velocity" in 
preceding sections. (Remember that, whereas u= is an 
independent variable, TL is now a function of t and the 
Xj's.) In general, v/e define, for any function Q(Uj's), the 
mean value: 

'/< 
pQ = m / QN dr, (IV-4) 

Having thus established the definition of N and 
having seen some of its properties, we now proceed to 
find its equation of variation. This equation simply states 
that the rate of change of probable number of particles in 
any volume is given by the convective flux around the 
edges. In Chap. II we saw that this means 

dN 3N 
äT+uJ3Xi 

0 (IV-5) 

This, then, is our required equation, and from it can be 
derived all the features that we plan to exhibit. (If the 
particles have appreciable interaction with each other or 
with an external force field, this equation requires 
modifications that greatly complicate the subsequent 
analysis.) 

Multiplying Eq. (IV-5) byQ(Uj's), some unspecified 
function of the Uj's, and integrating over TU yields 

dpQ 9    ,     rr-v 
f^-+ —(pQUj) = 0 
3t       9XJ J (IV-6) 

Suppose, now. that 0=1. Then Eq. (IV-6) states that 
dp    9püj 

= 0    , (IV-7) ■ + 
at    ax: 

which is precisely the conservation of mass equation of 
Chap.   II   [see   Eq.  (II-2)],  for  which we  now have, 
however, a precise definition of the fluid velocity. 

IfQ = Uj,then 

apTTj      a 
— + — (pu^j) = 0    , (IV-8) 
at    ax: 

whereas if Q = Uj2, then 

apü?     a     
ir+^xT(puiV = 0 (IV-9) 

Equations (IV-8) and (IV-9) are the momentum and 
energy equations, .jut to convert them to more familiar 
form requires additional manipulation. It is at this stage 
that the meanings of pressure, heat energy, and viscosity 
become much more clearly defined. 

Consider first the momentum equation. The quan- 
tity piijUj represents a flux of momentum that can be 
divided into two parts. To see this, it is useful to define 
the fluctuating part of the velocity by the equation 

uj=üj + uj' (IV-10) 

The average tjf^, this equation reduces to an identity, 
provided that Uj = 0. This, of course, is what is meant by 
the fluctuating part;, it is the amount by which the 
velocity deviates from the mean velocity, so that its mean 
should vanish. 

Thus, the flux of momentum can be written 

PUiUj=p(Ui + uJ)(Üj + Uj)       , 

= p(üiTij + ujüj+iiiUj +UjUj')     . 

The middle terms must vanish, because, for example, 

ui "j — "i «j — 0   . 

so that 

PÜiÜj - P(Ü"iUj H-u/Uj')   . 

It is now convenient to introduce the standard abbrevia- 
tion 

Pij =-/> <llj' 

Then the momentum equation becomes 

3puj ,    3 , __ 

(IV-11) 

(IV-12) 

Now the form is beginning to resemble that of Eq. (11-3); 
but, instead of a simple scalar pressure, p, we have a 
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generalized stress tensor, p^. 
The energy equation, Eq. (IV-9), can be treated 

similarly. First, we observe that ftpü? must represent ail 
the energy per unit volume of the molecules, both the 
kinetic energy of mean motion, pK, and the heat energy 
from the fluctuating motion, pi. That is, 

Pr = '/:pu7 , 

where E is the total energy per unit mass. As before, we 
can break this into two parts, obtaining 

E=54[(üp2+(Uj)2]   . 

It follows from Eq. (11-5) that 

K = '/4(üj)2 

(IV-13) 

and 
l = '/:(Ui')2 

and also, from Eq. (IV-11), that 

Pii=-2pl  • 

(IV-14) 

(IV-15) 

The second term in Eq. (IV-9) contains the energy 
flux, pu2Uj, which can be expanded, using Eq. (IV-10), as 
follows 

pufuj =p(Uj + Uj')u?      , 

= p UjUf + p Uj'uf 

= 2üjpE + puj'(üj + Uj')2 

= 2üjpE + 2p Uj'u/ U; + p u/uj'uj'    , 

= 2üjpE-2üipij + p Uj'ujUj' 

Thus, the energy equation becomes 

^p + |^ [p üjE- pijüj + J4 Pwj] = 0        (IV-16) 

which now begins to show a close resemblance to Eq. 
(M-4). 

To proceed, we must look in more detail at the 
stress tensor piy One of the most complicated parts of 
rigorous molecular dynamics studies arises when one 
attempts to derive a relationship between py and the 
mean-flow quantities. For this reason, we shall appeal 
instead to some physical reasoning, and find that this 
leads to a plausible justification for the form that is used 
in the Navier-Stokes equations. 

The stress tensor is supposed to indicate the nature 
of the forces that act in the fluid from the fluctuating 
part of the molecular motions. It must represent both the 
scalar pressure effects and the viscous shear effects. To see 

the physical basis for these two types of effects, consider 
a surface buried in the fluid that moves with the mean 
motion of the fluid. Because of the velocity fluctuations, 
there actually are molecules passing through this surface, 
the same number per unit time going both ways. If there 
are gradients within the fluid, however, there will be a net 
amount of momentum and energy crossing the surface. 
The momentum flux will have both a normal component 
(the scalar pressure effect) and a tangential component 
(the viscous shear effect). 

For example, suppose that the surface is horizontal 
and that the mean motion above it is zero, while the mean 
motion below it is rightwards. We thus have a shear layer 
at the surface, and viscous "forces" are expected to 
"drag" the upper fluid to the right. What actually 
happens, we now can see, is that rightward moving 
molecules diffuse across the surface from the lower to the 
upper regions, while molecules with zero net motion 
diffuse into the lower region. As a result the mean 
rightward motion of the molecules above the surface 
gradually increases, while that of the molecules below the 
surface decreases. This, then, shows us the true basis for 
the viscous drag at shear layers in gases. The process is 
actually a diffusion of momentum. 

These arguments, therefore, lead us to a means of 
expressing the stress tensor. Just as experiments show the 
heat diffusion flux to be proportional to the temperature 
gradient, so also the momentum diffusion flux is propor- 
tional to the gradient of velocity: 

3UJ 

Pij ~ — 
9XJ 

Actually, we must be careful to take into consideration all 
second-order tensors related to the velocity gradients and 
we must make sure that the final expression for Pjj is 
independent of an exchange of the subscripts. (This last 
requirement comes from the definition of p^, Eq. 
(1V-11), which is the same if i and j arc interchanged.) 
Thus, we must express the velocity gradients in terms of 
the symmetric rate-of-strain tensor: 

9üj     du: 
eiJ~"9xj+ 9x7 (IV-17) 

To be complete and to include the scalar pressure effects, 
we also need to introduce another second-order tensor. 
the Kronecker delta tensor, 5;:. This entity is defined as 

Su=l     ifi=j   , 

5(1=0     ifi^j   . 

Note, for example, the following identities using this 
tensor and the summation convention: 

Ujöjj = Uj 
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5^3 

Combining these tensors, and expressing the result in 
conventional notation, we write 

Pij=-P$ij + ^ X ekk5tj + Mey (IV-18) 

This, then, is the most general linear, symmetric relation- 
ship for the stress tensor that can be written among the 
available tensors. (Note that we have omitted from this 
expression for py several other possible tensors, but each 
of them can be shown to not contribute. Although ujiL, 
for example, is a good, symmetric, second-order tensor, 
we exclude it because its value is different if we look at 
the fluid from a uniformly translating coordinate system, 
giving a physically impossible type of force.) 

The scalar functions of proportionality, ju and X, 
have been called the first and second coefficients of 
viscosity, respectively. (Some authors call 2/X + 3X the 
second coefficient of viscosity.) 

We note that, if there is no shear, so that ey = 0, 
then pjj =-p5jj. Insertion of this into Eq. (IV-12) gives 
our previous nonviscous momentum equation, showing 
that p must still continue to be interpreted as the scalar 
(equation-of-state) pressure. 

We now are prepared to draw two very important 
conclusions. Insertion of Eq. (IV-18) into Eq. (IV-15) 
shows us that 

2pl = 3p-ekk(/i + 2*) ■ (IV-19) 

Physical reasoning shows that it is nonsense to associate 
heat energy with the size of the velocity gradients, so that 
our first conclusion is 2\x + 3X = 0, a condition that must 
be satisfied for our gas with no internal degrees of 
freedom. (This conclusion, called the Stokes assumption, 
would not hold if the gas were more complicated; in some 
circumstances 2ju + 3X can be large and important.) 

The second conclusion is that 

_2   . 
P = 3Pl - 

We have, therefore, derived the equation of state for this 
gas and shown that it is our simple gas of Eq. (II-6), with 
y - 5/3. As stated following Eq. (H-6), such noble gases as 
helium and neon are well represented by this equation of 
state, indicating that they must closely satisfy the 
restrictions that we assumed in this molecular-viewpoint 
derivation. 

We may observe that, except for the term Vi p uju-u- 
in Eq. (IV-16), the equations we have derived are 
complete. Not counting that term, there are exactly as 
many unknown field variables as there are equations. In 
summary, the equations are 

dp        9/9U: 

dl     9x~ = 

9pü*j      9 

d/oE      9 , _ _ ~TT", 
~W + 9x~ (PUJE" P'Jui + ** Puiuiuj) = ° 

Pij =-p6ij + H X ekk 6y -I ^ei; 

E -K + I = &u?+I 

p   = jpl 

M  + 2"X = 0 

(Actually, the theory has predicted nothing about p, but 
is capable of doing so if the intermolecular forces are 
included in the theory. For the present purpose, v/e 
assume that ju, which is a material property, is known 
from experimental investigations.) 

To fully complete the set of equations, we observe 
that \i p UjUjUj is a flux of energy resulting from the 
molecular fluctuations. This, then, can be identified as the 
heat conduction term, and, under a wide range of 
circumstances, it is appropriate to put 

i/      i t i   np UjUjUj :=-T 
9T 
dx; 

0 

in which r is a scalar coefficient of heat conduction and T 
is the temperature, and to use the observed fact that 
I — cvT, in which cv is the experimentally determined 
specific heat. 

Thus, our simplified theory has given insight into a 
number of properties of the materials and the equations 
of fluid dynamics. It has left some questions still to be 
resolved, such as how the scalar coefficients, p, X, T, and 
cv can be introduced with greater rigor and how their 
values can be predicted for circumstances of interest. To 
answer these questions, however, the theory becomes 
vastly more complicated and is best left as an extensive 
course of study. 

Another topic that lies within the scope of this 
chapter concerns the behavior of gases more complicated 
than the monatomic noble gases. A molecule that has 
more than one atom (such as a molecule of HC1) can 
possess internal energy. This is in addition to the kinetic 
energy of mean translation and the heat energy of the 
fluctuating motions. A molecule with two atoms, for 
example, can have energy of rotation and of vibration. We 
now invoke a law of statistical mechanics which states 
that all possible energy-carrying modes will, in equilib- 
rium, have the same energy. Suppose a molecule has n' 
modes of internal energy. It also has three modes of 
fluctuational energy (one for the motion in each of three 
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directions of three-dimensional space). Let n = n + 3. We 
have seen that equation-of-state pressure arises from the 
translational modes, and that 

P-fpI.   • 

where the subscript, t, refers to the translational heat 
energy. We now let 

1 = 1, + 1'   , 

where l' is the energy held by the internal modes, so that 
I is the total internal energy per unit mass. Now, from the 
statistical mechanics law, 

I' = si 

Thus, 

and 

P'ipi 

*-'M 
y = n + 2 

(IV-20) 

This result enables us to find y if we know the total 
number of energy-carrying modes for the molecule. 

For a noble gas with no internal degrees of freedom 
n = 3 and? =5/3. 

For a diatomic gas, there are three translational and 
two rotational modes. At ordinary temperatures, the 
vibrational mode is inactive, so that n = 5 and 
7 = 7/5-1.4. At high temperatures, the vibrational mode 
becomes important, so that n = 6 and 7 = 8/6 = 1.33. 

The more complicated the molecule, the greater is 
n, and 7 - 1. (Sulfur hexafluoride, for example, has 
7^1.08.) Thus, for all gases under ordinary circum- 
stances, 1.0 < 7 < 5/3. It is, however, a curious fact that 
the gases formed from the detonation of an explosive 
behave for a short time as though 7 » 3.0. 

When the distribution of energy among the various 
degrees of freedom is not instantaneous, then the effec- 
tive  value  of y can  be  time-dependent.  In  strongly 
nonequilibrium flows, this introduces an additional differ- 
ential  equation  that describes the continual trend to 
equihbnum, as modified by the disturbing effects of the 
rapidly changing flow field. For small departures from 
equilibrium, however, the equation can be approximated 
in a manner that clarifies considerably the meaning of 
second viscosity and, in particular, predicts a value for the 
coefficient 2p + 3X. This coefficient is zero for molecules 
that   relax   instantaneously   to   equilibrium   in  energy 
distribution among the translational and internal modes. 

To derive this result, we observe that it still is ' 

correct to write 

and 3 
I = lt + I'   . 

We introduce et and e', which are the specific internal 
energies per degree of freedom, in the translational and 
internal modes, ^respectively. For instantaneous equilib- 
rium, we put et =e , but this assumption is not valid if the 
internal modes cannot immediately follow the variations 
of the translational modes. Instead, we postulate a 
relaxation process, whereby the rate of change of e' is 
proportional to the difference between e' and et. With a 
as a relaxation-time parameter, we put 

„ de _ /       K 
adt~-(et-e)     • 

With It = 3 et, I' = (n - 3)e', and 7 = (n+2)/n (as before) 
we can combine these equations to obtain, for the 
pressure 

P = (7-l)pI + 2a(fc3)piel 
(IV-21) 

showing an additional term beyond what we previously 
derived, which depends on the rate of change of the local 
fluid variables. Note that this added term vanishes if n = 3 
(no internal degrees of freedom) or if a = 0 (infinitely fast 
relaxation rate) or if de'/dt = 0 (steady-state conditions) 
The significance of this term in the pressure is that it 
represents the correction to the first term, which gives the 
magnitude of the pressure as if the internal degrees were 
able to follow completely the equipartition-of-energy law 

To see the relationship of this result to the second 
coefficient of viscosity, we note that 

I = ne' + 3a4f dt 

which can be derived through appropriate combination of 
the above equations. For a small, we seek a power series 
(in a) solution of this equation for c\ with the result that 

P1- 1 1  3adl . /-., 2\ 

Thus, to first order in a, 

P = (y-1) pl + 2ap(n^)*L     . 
\nVdt 

Now also we have seen that, neglecting viscosity, we can 
write the fluid-dynamics energy equation in the form 

Pdt-Poä^- 

where p0 = (y - l) pi. Thus 

P = (7-l)pI-a(^3)Po( kk 
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This is to be compared with the contraction of Eq. 
(IV-18), which shows that 

p = p0-
,/£(X + |p)ekk 

Thus we identify 

(IV-22) 

This serves to demonstrate, when the relaxation rate is 
fast (a « 0), that the second viscosity is, indeed, related 
in point-function fashion to the rate at which trans- 
itional energy is converted to the internal degrees of 
freedom. 

To complete the discussion, we note that a can be 
estimated^ in some cases, by the intermolecular collision 
rate. If d is the molecular-collision mean free path 
(estimated by the ratio of molecular cross-sectional area 
to the number density of molecules) and if v is the mean 
fluctuation speed (comparable in value to the sound speed 
in the gas), then a « d/v. Thus, especially in regions of 
low molecular density where a is accordingly large, we 
can expect to find occasions in which these relaxation- 
rate processes contribute significantly to the fluid 
dynamics. 

The scalar pressure, p, is assumed to be a function of p 
and I, whereas the temperature, T, is related to I through 
the specific heat, so that I = CVT. In many cases, Cv is 
adequately treated as a constant, but in general it could 
also be a function of p and I. Likewise, X and p could vary 
independently as functions of p and 1; for many gases, 
however, p varies approximately in proportion to \ZT, and 
X =—(2/3)p. The vector gj represents the acceleration, tor 
example from gravity. 

An alternative energy equation is 

dpi     9pu:l 9UJ       9       9T 

~dT+  9x:   =p"J3xi"+3xr^Täxr) 

In vector form, 

9p 
at 

+  V • (pu) = o 

9u p^+p(Ü^V)u = pg--Vp+V(AV'u) 

+ 2(VPV)U + VX(MVXU)     , 

(IV-29) 

(1V-30) 

(IV-31) 

B. Summary of Equations. 

For reference it is useful to summarize the full 
equations with viscosity and also to write them out for 
several special cases. 

In component form, dropping bars from mean-flow 
quantities, 

fM + p(u-V)E = pu-g + V [rtfT-pu + XÄ(V-u) 
at 

+ % pV(u-u) + p(u-V)u] (IV-32) 

9p    9pu: 
+      1=0 

9t      9x; 

9pUj      9 
-är + ^r(puiuj-pij) = gi 

(IV-23) 

(IV-24) 

An alternative energy equation is 

P||- 
+ P("'V)I = V-(i7T)-pVfi + X(V'u.)2 + nUu-u) 

-2u-V(V-u) + u-VX(vXu) + V [(u-V)u]| 
(IV-33) 

3pE  _a 9T, 
9t      9x,(pUJE-piJUi-r9x7):=pUJgJ   •      (IV-25) 

p.. =_p5.. + j4 \ekk8ti + pey (IV-26) 

For plane, two-dimensional problems 

9t     9x      9y     U      ' (IV-34) 

E = K u? + 1 (IV-27) du _ 3p A 9  ... A , ^ 9u A _ 9v, 

9UJ    3uj 
e'j = 9x~+9xj (IV-28) ♦£*£•£»•   (,v'35) 
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'£-"*-£♦£ ■»♦wg.xÄ 
3y      3xJ 

'fr* ♦*<'♦*£>♦£ (IV-40) 

l3y   3xJ + ST^ + S)1 
(IV-36) 

dE 
',dT = ^ugx+vgy) + sr[Pu + Qv + M^-(BI + u2)] 3x 

dt y     ay     3y     3x   *3x      3x      a„ 

+ |rtPv + Qu + ^(BI + v2)]   . 
3y (IV-41) 

3x 

3 

3y     3y     3x      3x 3x       3y 

^^4"-^^Mu0.v|„ 3x 

3x ♦£*<■*♦£» ♦£!«.£♦.*>] 

in which 

d- 3        3        3 
dt-3T+U3x + v^ 

(IV-37) 

(IV-38) 

For many problems of interest, we put 

9T_   D3I 
T r— = /iB -r— 

3XJ    ^   3XJ 

in which  B is the ratio of 7 to Cv> assumed to be 
constant, Also, A = Aju, in which A is constant, often wi'h 

These  may be specialized even  further to the 

ZttTm?**a" ,u"""ics are in<le',""lM °f 

'':<£♦'£)-«.♦£*£) •   ov- 3y V*9y -42) 

P(äf + V^)=ä7 H>+*A + 2)£]  ,   OV-43) % 

„/3E.    3E\ a f p(3r+v^)=pugx+^j_pv+^ 

f(l+|)v2
+iu2

+BI]}   , 

with the alternative energy equation 

(IV-44) 

*)*%)  1 

♦£<**> (IV-45) 

^"<M?> 

we may shorten the momentum and energy equations to 

3x      3y (IV-39) 

ates Wi      ?    ül T ,S th3t °f CyIindrical coordin- atcs. With u, v, and w denoting the velocities in the r 0 
and   z   directions,   we   have   the  following  mass  and 
momentum equations: 

3p 
3t    r   3r    r  36»      dz  = °     ' (IV-46) 
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03ü .  .ru§u   v3u      du    jr»  ' 3wx   / 3w   v3\v       3w\ 

Pg<  9r+3rl2"9r+Hr3r + tM*te)] -<**-£ + Vz [2^ 37 + X(71T + 7aÄ + ä7 )' 

rVar     r    r de)    r 30 ["W +r 30    J1 + 7b7 Kta + ^^ K?W + 3T)J 

♦£K£*?)1     '                          (IV47) CIV-49) 

P8°   r 30*r30 Lr 30 + Hr 9r 
+ r 30 + 3z/| 

. _3 r/1 3w  3v\l     3 f /3v x 1 3u    vYl 

. ä|/8v    13u     v\     2  äuu 
r   U     r"39"7j + ?äö '       OV-48) 
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V. Rarefactions 

A. Adiabatic Rarefactions. 

The simplest type of rarefaction wave occurs when 
the piston at the end of ä cylinder of gas is impulsively 
withdrawn from the gas at a constant velocity. This same 
type of rarefaction wave also occurs in other circum- 
stances, making it well worth studying in detail. We 
neglect the effects of viscosity and heat conduction and 
take, as our starting equations [Chap. Ill, Eqs. (III-l 1)]: 

3p.    dp      3u    - 
aT + uat+p3T = 0     ' 

dt       dx    p dx 

P=fl(p) 

This last is the adiabatic equation of state, which is 
appropriate because there are no shocks or other dissipa- 
tive mechanisms. 

To solve the problem, we assume that the field 
variables are functions of x/t only. Then 

a 
aT" 

x d 
"t2d{ 

a 
alT 

1 d 
t d* 

(V-l) 

in which % = x/t, and the differential equations become 

(V-2) ^%*\%=« . 

occurs within it. 
Within the rarefaction wave are two choices of sign 

in the expression u-| = ± c. These correspond to the two 
possible directions of piston withdrawal. If the gas lies to 
the right of the piston, aid the piston withdraws to the 
left, we achieve the corditions shown in Fig. V-l. In 
Region I, adjacent to the piston, the fluid velocity exactly 
equals the piston velocity. Region I is outside the 
rarefaction, so that du/d£ = 0, implying that all field 
variables are constants in that region. 

In Region II we choose the sign by observing that at 
the edge next to Region III, where u = 0, both c and % are 
positive. Thus 

u—% =—c (V4) 

for a leftward withdrawing piston. We also could show by 
analogous reasoning that 

u-f = + c (V-5) 

for a rightward withdrawing piston. 
Region HI is the undisturbed gas, where the 

rarefaction wave has not yet arrived. Again, all field 
variables are there constant. 

To complete the calculation for the leftward with- 
drawing piston, we put u = %—c into Eq. (V-2), to obtain 

dc 

or 

d£   pd£ 

'-«-/?♦ constant 
(V-6) 

Because c is a known function of p, the integration can be 

(u-0| + p|=0     . (V-3) 

The sound speed, c = (dp/dp)*4, is a known function of p. 
These can be combined to show that 

Ku-^-c'lljUo 

Thus, either du/d| = 0 or u—% - ± c. The former condi- 
tion occurs outside the rarefaction region; the latter 

X 
Fig. V-l. 

Rarefaction wave with the piston withdrawing to 
the left. 
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performed and the full solution worked out. An example 
will show this in detail. 

For a polytropic gas, 
y- 1 

C;:C0(p/p0)   2 

where p0 and c0 describe the undisturbed state in Region 
III. Thus, 

fcdp. = _2c 
9      7-1 (V-7) 

and we get 

or 

and 

7—1 
c = ' . , | + constant 

7+1 

c-Co=^«-|b) 

u=?-co-^n«-ib) 

But u = 0 at % = %2l so that |b = c0. Thus, within the 
rarefaction (replacing £ = x/t), 

2   /x 
u = 7Tf(f-Co) 

7+lVt      7-ly 

(V-8) 

(V-9) 

for leftward piston withdrawal. Point b moves according 
to the result |b=c0, or xb = c0t. The front of the 
rarefaction progresses to the right with the sound speed of 
the undisturbed fluid. The velocity of point a is found 
from the value of £ at which u = up, the piston velocity. 

Thus 

In the special case that £a = up, so that the back of the 
rarefaction exactly follows the piston, we have 

Summary   of   Rarefaction    Formulas.    Leitward 
moving piston (Fig. V-l): 

In Region I: 

u = up(<0)    , 

7-1 
c=Co + ___LUp     . 

In Region II: 

u = 7Tl(f~c°) • 

7+lVt    7-1/ 

In Region III: » 

u = 0 

c = c0 

Also, 

7+ 1 
velocity of point a = c0 + ™y- up 

velocity of point b = c0 

Rightward moving piston (Fig. V-2): 

In Region I: 

u = up ( > 0)      , 

7-1 c-c0-iJ.Up 

u   =-2£o 
P      7_i (V-10) 

This is the escape speed. If the piston were to move any 
faster, the gas could not follow. Note from Eq. (V-9) 
that under these circumstances, c = 0 at the piston, so 
that the density has become vanishingly small. 

PISTON 

X 

Fig. V-2. 
Rarefaction wave with the piston withdrawing to 
the right. 
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In Region II: 

7+ 1 V  t    7-1/ 

In Region III: 

u = 0 

c = c() 

Also, 

velocity of point a =-c0 + 2-2-L u 

velocity of point b = -c0 

In both cases, the other field variables can be found from 
c. hor example 

, = P"© 
_2_ 
7-1 

B. Isothermal Rarefactions. 

«f «. '«*!htt conduction rate is great enough, all parts 
of the fluid wiU remain at the constant initial tempera- 
ture and the isothermal sound speed, C, = VPFHT will 
also be constant in space and time. In such a case', the 
equations are particularly simple to solve. Consider the 
example of a piston withdrawing to the right. With 

O=CMPIP0)    - 

the equations become 

f?+»f^,t? = o ■ax 

3u 
at 

3u 
+ u== + C|^-0 

3a 
'3x 

As before, the solution is found to be 

u-itc, 

-f-c, 

P=P <i) 
r-l 

AUhe place where u = up, wc find that x/t = u -C and 
o - -up. Thus, at the piston, the density is P     ' 

1 = 1 •£)" PP=P0exp(--t) 

Note that u and c vary linearly in the rarefaction. For 
7 - 3p also varies linearly, but for y < 3, p(x) is concave 
upwards. 

and we conclude that no matter how fast the piston 
withdraws the fluid can follow, so that the escape speed 
tor an isothermal gas is infinite. 
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VI. Shocks 

A. Normal Shock Relations. 

1. General Discussion. We showed in Chap. Ill that 
when a succession of compression waves are formed in a 
gas, w.th each propagating faster than its predecessor the 
waves eventually pile up at the front, forming Sst a 

ÄSFto the fie,d rriables-The t—ÄSm und« urbed to compressed gas occurs almost instanta- 
neously over a region so thin that the model of a 

toS Vl™"* CaSCS 3 V3lid aPP™*nation. Thi 
discontmiuty ,s known as a shock, and, although the 
differential equations for an ideal fluid actually predktks 

ÄS'fK bere meaningleSS at "' ^ and otter no clue for its subsequent treatment. The inclusion 
of viscous effects in the equations removes the ffij 
to  discontinuity,  and  even  allows  a fairly accurate 
pred,ction of the shock-transition detaUs 

In addition to shocks, there is another type of 
discontouity that can occur: the contact discominuftv A 
contact discontinuity moves with the fluid and generally 
occurs at the boundary between two types cSuKtt 

stance^ 8ene        ***** °ne fluid Und"r certain c^" 

fl„iH 2" Sh0Cki. °n the 0ther hand>moves relative to the 
fluid, changing the state of each fluid element as it sweeps 

■Lfe IS T"" U W" 
by considerin8 the following 

Twotrni nJ> °Ck " f Ü1^6 flat Plane seP^ating 
SrfJS       r        Ie&0m- Each re«ion is characterized by 
^vervU^°rmity W/thin

u
itse,f. a"" material velochS are everywhere normal to the shock plane. 

«h„ i,       n0tati0n 0f Fig- VI1 wül be followed. Here the 
shock ,s moving to the right and the fluid is more 
compressed on the left. In general, the shock speed v 
greater than the material speed on either side. Ahö 
u. > u+) which follows from the fact that all shocks are 
compressive. Four conditions exist which rehTchang 
of toe .ndicated variables across the shock. The fir7of 
te ,s the equation of state; the other three are derived 
as consequences of the three fundamental consem «on 

Wrsh^dnoLkn0Wn ^ *e Rankine-Hugoniot relations. 

n* ttnZ ?afTe the derivations of these relati<™- the results that follow are appropriate not only for the 
simple case shown in the diagram but are also instanfa 
neously appropriate for curved shocks with nonSZL" 
adjacent states, as long as the material speed is everywh r 
normal to the shock. evtrywneie 

a   CnLlT^TS DTation of th« Shock Relations. 
* Conservation of Mass. The distance per unit time that 
ma enal moves relative to the shock is (v-u+) in   he 
region ahead on the right, and (v-u.) in the region  h 
shock has swept over on the left. The mass per unit are 

t^t^^^'- deü0ted m' Which Passes int0 »he shock from the right, is thus m = p+(v-u+) This must 
however  be^ identical to the massier J thTwS 
leaves the  shock  to  the  left, in  order to obey th» 
conservation law. Thus we have 

m = p+(v-u+) = p.(v-u.) . (VII) 

b   Conservation of Momentum. The momentum per unit 
area per unittime passing into the shock from the right is 

mu+' ■S? ,?■* ?fCh kaVeS *« Sh0ck from the lift I 
Zu    „7   lG u      gC ™ moment"m per unit time is 

Severn mUSt ^ *" f°rCe per Unit area °" 
m(u.-u+) = p.~p+ (VI-2) 

c. Conservation of Energy. The change in energy per unit 

eTuXtrnerV5 fT * "^"^ *>ÄtT equal to the net rate of doing work on the region: 

m(E.~E+) = pu,-p+u+ . 

fig. VI-]. 
A plane, one-dimensional shock wave. 

(VI-3) 

These three simple results arc useful forcxpWi,,« , 
number of situations, as will be shown. But first   f0 

convenience in handling the shock relations, we introduce 
the followmg notation for each field variable: 

Sa = a+-a     , ) 

ä  =%(a++a)    ,   ( 

where  a   tands  f()r any  Qf ^  ^ 

following identity may also be written: 

Hala2) = äl8a2 +ä2öa1   . 

nöwr^tetaf0" n°tati°n' *" Sh0Ck reIati°"S ™* 
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m = vp-pu 

v5p   = 6 (pu) 

m5u = 5p 

m6E = 6 (pu) 

(VI-4) 

Probably the three most useful general forms may 
be obtained by setting E = E + 1/2 u2 and eliminating m 
from the equations, which results in 

v5p = 5 (pu) 

(5p)(si)=-(5u)2 

51    =-p(si-) 

(VI-5) 

3. Integral Derivation of the Shock Relations. In 
Chap. Ill, it was shown that the one-dimensional equa- 
tions could be expressed in integral from. These equa- 
tions, Eqs. (III-41) and (III-42), are all of the type 

j (Bdt-Adx) = 0   . 

They express the conservation of mass, momentum, and 
energy in either Eulerian or Lagrangian coordinates and, 
since they are not ambiguous at a discontinuity, we are 
accordingly justified in assuming that they are valid at a 
shock. 

The line in Fig. VI-2 is a plot of shock position 
versus time, with the shock moving in the positive 
x-direction. Draw a rectangle about a segment of the 
curve in the vicinity of a point of interest. The rectangle is 
to be considered so narrow, in a direction normal to the 
curve,   that   contributions to an  integral  around  the 

U2,t2) 

t 
Fig. VI-2. 

Shock position vs time. 

rectangle due to its ends will be negligible. The rectangle 
cuts the shock curve at (xi.ti) and (x2,t2). The integral 
equation for a path around the rectangle is thus 

A_(x2-x,)-B_(t2-t,) + A+(x,-x2) 

-B+(t,-t2) = 0     , 

where higher order contributions due to finite rectangle 
size have been neglected. If, now, the rectangle is 
sufficiently short, then (x2-x,)/(t2 -t,) differs negli- 
gibly from the speed of the shock, v. In this limit, the 
result from the integral equation becomes 

v6A-5B = 0   . 

Thus, from the conservative Eulerian equations, Eqs. 
(IH-41),we obtain 

v5p        =  5(pu) 
v5(pu)   =  5(pu2 + p) 
v6(pE)   =  6(pEu + pu) 

The fiist of these is identical with the previous result in 
Eq. (VI-4). It can be shown that all three of them are 
reducible to the results obtained from the fundamental 
derivation. 

From the conservative Lagrangian equations, Eqs. 
(111-42), we obtain 

v'p0S(-p-)   =-5u      , 

v'p05u       =5p 

v'p06E       = 5(pu)    , 

where v' is the Lagrangian shock speed-, that is, the speed 
of the shock relative to the unshocked material. The 
quantity vp0 is exactly equal to m, the mass per unit area 
per unit time passing across the shock. Thus 

mö(^-)"      =-5u 

mSu =6p , 

m5E = 5(pu) 

Through the Eulerian definition of m in Eq. (VI-4), it can 
be shown that all of these different forms of the shock 
relations are equivalent. 

4. Shock Relations for Special Cases. Analytical 
solutions will now be presented for a variety of the more 
common caäes that may arise. 
a. Fluid Ahead at Rest. If the coordinate system is such 
that u+ = 0, then 
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v(p-p+) = p.u. 

(P--P+)(p.-P+) = P.P+u.2 

p.+ P+ 
,--I+="2pT+

(P-"P+)    • 

(VI-6) 

In particular, Eq. (VI-6) may be transposed to give the 
shock speed in terms of material speed and densities: 

p. u. 
v =  

s   P.-P+ 

b. Fluid Behind at Rest. If the coordinate system is such 
that u. = 0, then 

v(p-p+)=-p+u+ 

(P--P+)(P.-P+) = P.PX 

p. + p+ 
l--h = -2Tp~+

ip--p+)   ■ 

c. Shock at Rest. If the coordinate system is such that 
v = 0, then 

p.u. = p+u+ 

(P--P+)(P--P+) = (u_-u+)2 p.p+      , 

P- + P+ , 
'--,+ = 27^r^ • 

d. Polytropic Gas. In the special case of a poly tropic gas, 
the relations may be rewritten in a number of convenient 
forms. First, let c. and c+ be the sound speeds behind and 
ahead of the shock, respectively. Consider the case where 
u+ = 0. Wc define 

M 

U = 

P == 

M's- 

c+ 

u. 

p^ 

p+ 

£1 
p+ 

u. 

Relative to the gas aliead of the shock, M and U are, 
respectively, the Mach numbers of the shock and of a 
piston producing it. M' is the Mach number for the flow 
behind the shock. It follows from the shock relations that 
U, Z, P, and M' are all functions of M alone. Thus 

U = 
2(M2-1) 
(7+ 1)M 

7 -      7 + 1 
"    7~l+(2/M2) 

P=1+-^(M2-1) 
7+1 

M' = 
2(M2-1) 

M|[7-1 +(2/M2)] [2TM2-7+ 1] (,/2 

or, conversely, 

11% 

M2 = 
2Z 

7+ l-(7-l)Z 

M2 = 1 +^±I(P-1) 
2y 

M2 ■-8+(72-67+l)(M')2-4(7+l)M')l + [(7+l)/4l2(Myl 
47(7» IHM')2-8 

e. Infinite Strength Shock. If the shock is very strong 
(that is, if the shock speed is large compared to the sound 
speed ahead), then M -» « and 

u 
M 

2 
7+ 1 

7+1 Z-> 1—- 
7- 1 

P    ^    27 
M2 ~" 7 + 1 

M'-* 
r   2    ] 
.7(7-1). 
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Thus,   the   following   conclusions   can 
concerning an infinite strength shock. 

be  made 

I. The shock speed is determined by the fluid 
speed behind it. If the shock is formed by a piston moving 
with uniform velocity, the material speed behind the 
shock equals the piston speed and 

7 

2. The compression produced by an infinite 
strength shock is independent of the shock speed and 
depends only on the nature of the gas. Since, in general, 

7+ 1 
p+Vl+(2/M2)       ' 

the greatest possible compression that can be produced by 
a single shock in a polytropic gas occurs as M -> °°: 

P. _(7+ 1) 
P+    (7-I) 

As an example, in air, with 7= 1.4, the greatest possible 
shock compression is 6. 

3. The maximum Mach number for the flow behind 
a shock moving into a polytropic gas at rest is a function 
of 7 only. Any increase in material speed as that critical 
Mach number is approached causes the sound speed to 
increase by the same factor. In air, this limit is M = 1.89, 
although vastly higher Mach numbers can be achieved 
experimentally. In wind tunnels, for example, high- 
velocity gas is allowed to expand in special chambers so 
that it cools. If the conditions are properly arranged, the 
sound speed goes down and the flow Mach number 
increases. 

The relations for an infinite strength shock can be 
summarized in more convenient forms: 

P. ^7+1 
P+    7-1 

7 + 1 
v = -Sj— u 

I. = '/. u2 

(Vl-7) 

(VI-8) 

P. = P.u; (l^l) = Pt v2 (^fj) 

M-T'   . 
1.7 (7-0J 

u. = c 

Note from Eq. (VI-8) that there is equal partition 
between internal and kinetic energy behind an infinite 
strength shock. Note also that for most real gases, which 
often can be considered polytropic with 7 < 2, the 
material speed behind the infinite strength shock is 
greater than the sound speed. 

/ Stiffened Gas. A shock moving into a cold material at 
rest, that is, one for which I+ and u+ = 0, has the shock 
relations, from Eqs. (VI-5): 

v5p = 8pu = p.u. , 

5Ps£ + u.2=0 

I. + PS£=O 

If this material is initially at its normal density, then 
p+ = 0 and 

v = • 
u. p. 

P+ 

Consider the "stiffened" polytropic gas equation of 
state, which approximates some metals. The equation of 
state is 

p = a2(p-p0) + (7-l)pl   . 

Setting p+ =p0, dropping the (-) subscripts, and defining 

d 
7+ 1 
7-1 

JP. 
Po 

2 -  2a2 

R 

b2 = 
7-1 

leads to the solution 

or 

R-l 
b     [R(d-R)F 

Note that R < d for all u/b. 
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The compression ratio for the stiffened gas equation 
can be examined further by comparing its relations with 
those outlined in d. above for the simple polytrbpic form. 
Recall that for 

p = (7,-l)pl   , 

it was seen for an infinite strength shock, Eq. (VI-7) gives 

P- _ 7i + 1 
P+    7i " 1 

where 7, denotes the 7 chosen for the simple form. But, 
for the stiffened form, where 

p = a2(p-p0) + (72 + l)pI   , 

and 72 is the 7 chosen for this equation, the compression 
ratio for an infinite strength shock is 

£-'K)- 
2 + teW^'A-l 

fV*!) 
where A = u./a. To get this same compression ratio from a 
polytropic gas would require a rather large 71, since, in 
representing relatively incompressible materials, such as 
metals, one wants pjp+ -*■ 1; therefore, 7, > 1. Setting 
the compressions equal and solving for 7! in terms of y2 
we find 

where 5u 
m = pv-pu = r-     , (VI-9) 

H-p) 
together with the relation 

6[p(u-v)] =0   . (VI-10) 

The constant isothermal sound speed is a =-^y~ 1)1, 
These two shock relations have the solution 6u = 8p - 0, 
unless 

m(v»ü) = a2p = p 

This last relation can be used in place of either of tho 
others." 

Consider an isothermal shock passing into a material 
at rest. From Eqs. (VI-9) and (VI-10), 

p(v~u) = p0v   . 

Also, 

p0uv = a2(p-p0)     • 

With p eliminated, 

v2~uv-a2=0   , 

w!iich is the form that results from a shock moying into a 
material with isothermal sound speed a. 

Thus, if the piston speed, u, is given, then 

■v=V4[u + (ua+4aa)%] 

and 

p__ (u2+4a2)% + u 
Po " Tur'+47jK^y 

For A S 1.0 and 72 at least up to 4.0, 

.  2a . 72 - 1 

This is the value of 7 necessary for the polytropic gas 
equation of state, by which that equation can approxi- 
mately represent a stiffened gas with 7 = 72. 

g. Isothermal Shocks. In considering isothermal shocks, 
we use the shock relation based on the conservation of 
momentum, which may be written 

m6u = 5p = a2 8p  , 

h. Shocks Fronted by Wall Heating. Consider the cm? 
tions for steady one-dimensional motion of a gas in ; 
cylinder with nonuniform wall heating: 

du      3D 
I — K. 

""dx 9x 

dpu 
3x 0      , 

31 
m r~~ 

OX 

3u 
~P9x~ 

+ S 
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Here S = the energy source per unit length per unit time. 
The second equation can be integrated to give pu = m, the 
constant mass flux. We thus start with 

pu= m    , 

mu + p = B   , 

and 

ox    m öx 

or 

-fe-f ml=£- + fsdx+D    . 
'o 

D= ^> P2 

(7-1)      2p0u0 

Note that if D = 0, then 

_ 2p0u0
2 

Po 7-1 

which shows that the initial state was produced by a 
shock passing through a cold, homogeneous material at 
rest. But, in general, D # 0, and thus 

Po +PQUQ   + 
P 7+ 1 ;(^)!-^.(^>f 

B, m, and D are all constants, to be determined by the 
flow conditions at some prescribed position in the 
cylinder. 

Suppose that I = p/(7-l)p is the equation of state 
for the gas. Substitution gives 

CF?5-£-<'♦» 
m 

p = B 

where 

AW = /„ S dx 

Next, 

m    B - p 
p        m 

and 

V  m )\y - l)~ 

solving for p results in 

2m 

B      r  B2 7-1 "1 % 

P 
=
 T^ 1(7^1?-2m^TT(f+D)J 

Let S(x)so for x <0. There also, p = p0, u = u0, and 
p = Po. Then 

m = PoUo 

B= PoU0
2 + po 

showing the variations of pressure as a function of the 
heating integral, f(x). In terms of p, we also can find 

p = m PO
2
UQ

2 
Po 

B-p    PoU0
2+Po-p    l+^—| 

PoUo 

and 

PoUo [poUo2 + Po - p] = u0 fl + ^_^1   . 

When p becomes imaginary, a shock is formed. If the 
fluid speed is exactly sonic, then 

_  -PQUQ ... Po - ~~—   , with 
7 Uo =c0 

and 

P = Po + [-2poUo(^rf)f(x)] 

In this case, even slight heating at a fixed point will 
produce a shock. If u0 > c0, then the pressure rises with 
heating, the velocity decreases, and the density increases. 
If u0<c0, on the other hand, the results are the 
opposite. 

/'. Decay of a Shock Wave. We shall now obtain a 
relationship between the acceleration of a shock front and 
the gradients behind the shock. Consider the shock to 
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have infinite strength. Then, along the line in x-t space 

x=rt v(t')dt 

we have 

The three unknowns arc 3p/9x, 9u/9x, and 9l/9x, which 
art to be determined as functions of the time rate of 
change of shock speed, v. The solution of these equations, 
utilizing the Rankine-Hugoniot relations for the sliockcd- 
fluid field variables, gives 

2v 
U»=T~+T   ' 

7+ 1 
Ps=—fPo 

's = ** V      • 

Just behind the shock we have 
9p    3pu __ n 
9t     9x        x 

pu 

9u        9u,3p_. 
p3T + puaT+9x-°   ' 

91 91 9u       n 
P9T + pU^ + P9^ = "xpU 

p = (y-l)pl    , 

where n = 0 if the shock is plane, 1 if it is cylindrical, or 2 
if it is spherical. The changes of p,u, and 1 along the shock 
motion just behind the shock are given by the following 
version of the infinite-shock relations: 

/d£\ s9p 
VdtA    9t 

+ v|e = 0 9x 

9u        9u _ 2v 
3t 9x     7+1 

9I_        911 =     4w 
9t      V9x     (7+1)2 

These enable us to eliminate the lime derivatives and to 
write the desired equations in three unknowns: 

9p       9u       dp    n 
ox       9x       9x    x 

r 2v 9u] 
'|_7~^nv9xj 

I"  4vv     _    91~j 
'[(7+i):    V9xJ 

+ pu-+(7-l)pl-+-(7-i) 

plu = 0   .(VI-13) 

9x 

& = _ 6(7+ Qv'Pn      2np0 

9x (7-l)2v2   (7-l)x 

9u_ 6v 47nv  
9x~     (7+l)v     (7+l)2x 

91 _     8(2 - 7)V 4(7 - l)nv2 

9x"' (7- 1)(7+ l)2      (7+l)3x 

/. The Very-Weak Limit: In the limiting case of a weak 
shock, we put M = 1 + e, where 0 < e < 1. Examples of 
approximate weak-shock relations arc 

u^ 

c+ 

c. 
c+ 

4e 
7+ 1 

1 +2e 
V7+1J 

Perhaps the most important feature of the weak shock is 
that the entropy change across it is extremely small, and 
goes as c3. This may be shown in the following mariner, 
From Eq. (111-51), 

5S 
k 

- 7_, in 22  -jinB2 
.     Pi                PiJ 

where k = (7-l)b = Cv-l)cv. 

But for; polytropic gas 

£3 

1 ~z 
1 — y  

1 + z 
Pi 

1+7 - 
-z 
+ z 

(Vl-11)       where 

Z = p2/p, 

(VI-12)       Thus, 

■S,  = 
7-1 

1-7 
fin 

1-Z 
1+Z 

1 +7 1 -z 
1 + z 

-7 fin Z 
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For Z = 1, S, =S2  . 

Ifwclet Z=l +ei    , 

where,  according  to  the  Rankine-Hugoniot  equations 
e, =4e/(7+l), then 

s>-^H-.(^)]-««K^)] 
-7«n(l + ei)| 

-}■ e,7+^e,z 7- je,3 y + .. 

Finally, replacing e, by its function of e, 

3(7+I)2 
s^-s. =^TTT2 +0(e4) (VI-14) 

B. Oblique Shock Relations: The Wedge Problem. 

The flow of gas past an infinite two-dimensional 
wedge of half-angle a approaches a steady-state configura- 
tion as time passes. If the incoming flow is sufficiently 
fast, an attached shock is formed, as shown by the broken 
line in Fig. VI-3. Since the appearance of the configura- 
tion is independent of magnification, there is no signifi- 
cant length to the system, and the shock line must be 
straight. Furthermore, the trajectory of any given fluid 
element will be a pair of straight lines as shown, and the 
trajectory beyond the shock must be parallel to the side 
of the wedge. 

The shock relations for this problem can be formed 
in exactly the same way they were formed for the simple 
one-dimensional shock in Chap. VI, Sec. A, if one first 
resolves the velocity on each side of the shock line into 
components parallel and perpendicular to the shock. This 
is shown graphically in Fig. VI-4. If we let m be the mass 
per unit area per unit time crossing the shock, then 

m = p0u0 sin 0 =pu sin (0-a) . 

WP0'E0/ 

Fig. VI-3. 
The flow of gas past an infinite two-dimensional 
wedge. 

The conservation of tangential momentum is given by 

mu0 cos0 = mu cos (0-a) , 

and the conservation of normal momentum is given by 

Po + mu0 sin 0 = p + mu sin (0-a) . 

To conserve energy, we have 

mE0 + p0Uo sin 0 = mE + pu sin (0-a) . 

These four relations, together with the equation of state, 
are sufficient to determine the shock angle 0, as well as 
the field variables behind the shock (p, u, p, E). all in 
terms of the input field variables (p0, u0, p0, E0) and the 
angle a. 

This can be shown with a simple example: 
Consider a polytropic gas, where we know that 

E = P 1      2 ~^r-  + -r U 
(y-i)p    2 

Fig. VI-4. 
Resolution of velocities on both sides of the shock 
into components parallel and perpendicular to the 
shock. 
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In terms of the incoming flow Mach number M0, where 
M0 = u0/c0, one can show that 

tan(Ö-a) -a)=2 + (?-})U sin2 0 
(7 + 1)M0

2 sinö cos0 
(VI-15) 

For given values of M0 and a, one can find 0, and obtain 
the other field variables from 

P = Po 

u = u0 

tan0 
tan(ö-a) 

cosö 
cos (0 - a) 

P = Po +Po"o2 sin2 0 
[1 _ tan (0 - a) 

tan 0 

Note that if M0 = °°, that is, the incoming flow is cold, we 
have, from Eq. (VI-IS), 

y- 1 
tan (0 - a) = -*—r tan 0 

7+1 

so that 

P = Po 
7+1 
7-1 

which agrees with the relation for an infinite strength 
shock given by Eq. (VI-7). Further, in this infinite Mach 
number case, one can solve explicitly for 0, 

l-[l-(72-l)tan2a1% 

(7- 1) tana 
tan0 

but the above solution is real only if 

tana< w 
If the angle is greater, the shock is detached from the 
wedge, and a different procedure is required to solve the 
problem. 

If o = 0, meaning there is just a point disturbance in 
the flow field, then Eq. (VI-15) yields sin 0 = 1/M0. There 
is no dependence on 7 in this case. The line emanating at 
this angle is called the Mach line. 

The graphs illustrated in Figs. VI-5 and VI-6 plot 
the wave angle 0 for a plane shock as a function of Mach 
number ahead of the shock, M0, for various values of a. 
The first graph, Fig. VI-5, is for diatomic gases, such as 
air, where 7=1.4; the second graph, Fig. VI-6, is for 
monatomic gases, where 7 = 5/3. 

C. Oblique Shock Reflections: Regular and Mach. 

1. General Discussion. The simplest example of a 
shock reflection is that of a one-dimensional shock wave. 
Recall that in Chap. VI, Sec. A, we replaced the 
hydrodynamic equations of continuous flow with equa- 
tions relating the changes of the field variables across a 
shock wave. Four conditions existed: The first was the 
equation of state, while the last three were based on the 
conservation laws and were known as the Rankine- 
Hugoniot equations. Together, they formed a set of shock 
relations capable of predicting the strength of a shock 
which has undergone head-on reflection by requiring that 
the reflected shock leave the fluid behind it at rest. 

If, now, we choose to study the reflection of a 
shock from a solid boundary at some angle of incidence 
other than head-on, we find that the problem becomes 
somewhat more complicated. It is known as the "inter- 
action problem," in that the solid boundary can be 
considered a plane of symmetry for the interaction of two 
shocks of equal strength. The problem is simplified by the 
fact that there is no characteristic length to the system 
and the equations can be transformed so that our 
variables become x/t and y/t. Thus, the configuration will 
grow so as to remain self-similar at all times. 

Consider a plane shock wave, I, which is traveling 
with constant velocity in an ideal gas of negligible 
viscosity and heat conductivity and which is incident at 
an angle a upon an infinite, plane rigid wall, causing a 
reflected shock, R, to arise from the wall. The problem is 
identical to that of a symmetrical wedge of infinite 
length, oriented so that the bisector of its vertex is normal 
to the incident plane shock, as shown in Fig. Vl-7. Two 
parameters may be varied: a, the angle of incidence, and 
£, the shock strength p+/p.. 

Oblique shock reflection processes may take either 
of two qualitatively different forms, regular reflection or 

Fig. VI-7. 
Regular shock reflection process. 
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Fig. VI-6. (cont.) 
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a   50 

a0 - SMALLEST a AT WHICH MACH REFLEC-    j 
TION IS EXPERIMENTALLY OBSERVED. 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Fig. VIS. 
Regions of regular and Mach reflection in the a-£. plane, where y = 1.4. 
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Mach reflection, the latter named after the physicist who 
first reported it. Regular reflection occurs when the angle 
a is small or the shock is sufficiently weak (£ -*• 1), so that 
signals from points behind the shock move more slowly 
relative to the wall than does the shock itself. Thus the 
region influenced by the wedge may be divided into two 
subregions, numbered 3 and 4 in Fig. VI-7, to the first of 
which the wedge appears to be of infinite extent. The 
dividing line between these two regions is a rarefaction 
wave originating at the vertex of the wedge. 

If we now decrease the wedge half-angle e so that 
the angle of incidence a increases, the signal from the 
vertex approaches the intersection of the incident shock 
with the wall and finally overtakes it at some angle as, 
where the flow in region 3 in Fig. VI-7 is just sonic 
relative to the point of intersection. The reflected shock 
has now become curved over its entire length. At some 
slightly greater angle, a^, the theory of regular reflection 
no longer gives a two-shock solution, and at a still greater 
angle, a<,, Mach reflection begins. These are shown in Fig. 
VI-8. A typical Mach configuration is shown in Fig. VI-9. 
The reflected shock R meets the incident shock I at some 
point T from the wedge, and this point is joined to the 
wedge by a third shock M, commonly known as the Mach 
stem. The intersection point T of the three shocks is 
known as the triple point, and a fourth discontinuity, a 
slipstream or contact surface S, originates at the triple 
point and comes back down toward the wedge. The 
slipstream is characterized by a discontinuity in tangential 
velocity, temperature, and density but not in pressure. It 
is associated with a difference in entropy between the 
streamlines passing just above and below the triple point. 
The component of velocity tangential to the slipstream is 
discontinuous, whereas the normal component is contin- 
uous. The entire configuration grows from the vertex in a 
self-similar fashion. 

If we further decrease the wedge half-angle e to 
cause yet more glancing incidence of I, and increase the 
shock strength to the point where the flow behind the 
shock becomes supersonic with respect to the wedge, we 

^ 

observe a variation of the Mach reflection process, as 
shown in Fig. VI-10. The reflected shock R is now 
attached to the wedge vertex, forming a bow wave W. Gas 
moving through this wave is supersonic relative to the 
wedge, and thus the gas which was originally at the corner 
when the shock I first hit the wedge is carried along so 
rapidly that signals emanating from it cannot influence 
the region adjacent to the corner. This is a region of 
uniform flow (numbered 3 in Fig. VI-10), and is separated 
from the nonuniform region behind it (number 4) by the 
leading edge of the rarefaction wave sent out from the gas 
which was originally in the corner region. 

We have now discussed qualitatively the two basic 
types of oblique shock reflection processes. The following 
discussion will describe quantitatively the theories in- 
volved, so that one may predict the type of reflection 
process that would be expected from a given set of initial 
flow conditions: y, a, and £. 

2. Regular Reflection. The theory for the steady- 
state region in the regular reflection process determines 
the strength and angle of the reflected shock by applica- 
tion of the condition that the flow behind the reflected 
shock be parallel to the wall. We shall see below that there 
are two solutions for the angle of the reflected shock; 
these correspond to the so-called weak and strong families 
of shocks. If we let the incident wave become sonic, the 
strong shock solution predicts that the pressure on the 
wall becomes infinite, which contradicts acoustic theory. 
(Further, it has been found experimentally that the 
reflected shock is always in the position corresponding to 
the weak shock solution, as shown in Fig. VI-16.) Figure 
VI-11 gives a set of curves,each of which represents a as a 
function of a for the fixed value of % given on the curve 
and y ~ 1.4. Figure VI-12 is ii similar plot, but for y = 5/3. 
It is observed immediately that the angle of incidence is 
not equal to the angle of reflection: a4'a . The solution 
is obtained in the following manner. 

4 

Fig. VI-9. 
Typical Mach reflection process. 

Fig. VI-10. 
Typical attached Mach reflection. 
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Fig. VI-11. 
Angle of incidence vs angle of reflection for shocks of different strengths undergoing regular reflection. 
y= 1.4. 
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Fig. VI-12. 
Angle of incidence vs angle of reflection for shocks of different strengths undergoing regular reflection. 
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Assume, in accordance with experimental results, 
that when a plane shock wave is incident upon a rigid wall 
a plane reflected shock is created and that in any of the 
angular domains the fluid is in a perfectly uniform state. 
Thus we have the situation shown in Fig. VI-13, whose 
notation we shall follow. Here I is the incident shock 
wave, and R is the reflected shock. It is convenient to 
work in the coordinate system in which point 0 is at rest, 
causing the reflection to remain stationary. 

The vectors Z and Z' denote the flow incident on 
and emerging from the shock wave I. The tangential 
component of particle velocity is conserved in crossing a 
shock wave, but the normal component is decreased since 
shock waves are compression waves; thus, the flow vector 
is deflected away from the normal to the shock crossing 
it. The angle measured from the normal to the shock, Nj, 
to the incident flow vector is denoted by T, and the 
deflection Z to Z' is denoted by 6. These quantities are 
similarly defined for the reflected shock wave, as shown 
in Fig. VI-13, along with the addition of primes where 
necessary. 

The problem is reduced by assuming constancy in 
each flow region. Thus, given the angle of incidence, 
a = (TT/2) - T, and the strength of the incident shock, 
£ = P+/P-< one can determine the position and strength o' 
the reflected shock. We know that the flow Z" must be 
parallel to the wall. The Rankine-Hugoniot equations 
enable us to determine the deflections produced by a 
shock wave in terms of % and a. We now use these to 
obtain mathematically the condition that the total deflec- 
tion (from Z to Z") be zero. 

It is now evident that we may write: 

a + T = 7r/2   , 

a' + S' + r' = 7r/2   , 

8 =-6'    . 

We next set 

x = tan T = tan (n/2—a) . 

The relation between the pressure ratio and the compres- 
sion ratio is given by 

7 + 1 

_ _ P. _    £ 
7-1 + 7+1 

Fig. VI-13. 
Notation for theory of regular reflection. 

which reduces to 

P,   _ 7 + 1 V = 
P+ 7-1 

for an infinite strength shock (£ = 0). We next solve for 5 
from the equation 

tan (T + 5) = 77 tan T 

which is 

s _ t   -1 (17 ~ l)x 5 = tan    V.     \ 
1 +I7X2 

The deflection condition is equivalent to the requirement 
that 5 + 5' = 0, that is, to 

(i7x-x'X7+ 0(1 +X'
2
)(TJ-1)(1 +T?X

2
) 

+ 2(T?
2
X

2
-X'

2
)[X'(1+T/X

2
)-(T?-I)X] =0   . 

To solve this for x', we divide by the linear factor 
(i?x-x'), which leaves us with a quadratic whose solution 
is 

,' = - 2x(r?
2x2 + l)±(r2x(7?

2x2 + l)12-4)|7(7?(l+x2(r?-l))-l)+T?(l+x:i)12-rT?
2x2 + ll2h'/ 

2|7[T?(1+X2 (T?-1))-1] +T7P+X2 (TJ+1)] + l( (VI-16) 
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The upper portions of the curves in Figs. VI-11 and VI-12 
correspond to the use of the + sign in front of the radical 
in Eq. (VI-16), the lower portions to the- sign. The 
resulting roots for x' are negative, and since 

-h» 

x = tan T 

the a values are given by 

»'upper = */2 - [(tan"11 x'upper|) + 6]    , 

»'lower = "/2- [(tan"11 x',ower|) + 6]    . 

As the angle a is increased, keeping % constant, the 
Mach number of the flow under the reflected shock 
decreases with respect to the shock intersection with the 
wall until at some angle as this flow is just sonic and a 
region of uniform flow is no longer under the reflected 
shock, which is now curved over its entire length. The 
two-shock theory above assumes uniform flow bui 
should, nevertheless, remain valid in the immediate 
vicinity of the shock intersection since no evidence of 
angular variations exists there and the flow deflection 
condition is still satisfied. As a is increased still further, 
the two solutions approach one another and coincide at a 
slightly greater angle ae, as shown in Figs. VI-11 and 
VI-12. However, regular reflection has been observed to 
persist somewhat beyond this theoretically limiting value. 

The a,, curve is obtained by setting the radical in 
Eq. (VI-16) equal to zero and solving the resulting cubic 
for x. Then, since we may write 

Oy. = 7r/2 - tan"1 x   , 

we follow the equations outlined above to obtain ae'. 
The theory of regular reflection agrees well with 

experimental evidence for a<ae for all shock strengths, 
with the exception that for the strong shocks £ < 0.2 the 
points for a near ae fall consistently below the two-shock 
curve. It has been suggested that the change in y for air at 
high temperatures may be responsible. 

3. Mach Reflection. The three-shock theory is used 
to compute the angles at which the shocks meet in a Mach 
reflection process so that the flow passing through the 
two shocks emerges parallel to and at the same pressure as 
the flow passing through the single shock (Mach stem). 
This theory assumes that in the immediate vicinity of the 
triple point the three shocks are straight and that all 
regions of flow are uniform. We shall follow the notation 
of Fig. VI-14, with our coordinate system fixed in the 
triple point, so that the incoming flow enters the incident 
shock at an angle co. The discontinuity R makes an angle 
Li at the triple point; thus we have 

w = a-x   , 

fig. VI-14. 
Notation for three-shock theory. 

and co and co' reduce to the angles of incidence and 
reflection for regular reflection (x = 0). 

In this coordinate system, the flow behind the 
incident shock remains supersonic and, since the flow 
component normal to the reflected shock is required to 
be at least sonic, this shock must fall between the 
upstream and downstream Mach lines. When the flow is 
just sonic, these lines coincide at a position normal to the 
flow, and the reflected shock reduces to a second wave. 
This case is known as the "extreme sonic solution," and it 
is approached as the wedge angle e is decreased, keeping 
the shock strength £ constant. 

It has been shown experimentally that if £ is held 
constant, x is an increasing function of a. As a decreases 
along a vertical line in Fig. VI-8 from a point in the region 
of Mach reflection, a critical value a = a0 will be reached 
at which the Mach wave can no longer be found and the 
triple point T seems to coincide with the wall. By plotting 
X vs a curves for constant £ and extrapolating to x = 0^ 
the angle oo is well determined, as shown by the curves of 
Fig. VI-15,  which were based on experimental data. 

Various families of three-shock solutions have been 
developed, and usually chosen for comparison with 
experimental data is one that agrees well for strong 
shocks. Unfortunately, it disagrees seriously for the weak 
shock cases, as the nature of the solution is such that in 
this domain it is physically unreasonable. If the strength 
of the incident shock is held constant while o/is 
increased, or as the Mach number of the supersonic flow 
behind the incident shock decreases, the strength of the 
reflected shock will diminish and finally vanish while the 
flow is still supersonic. The limiting position of the 
reflected shock is that of the upstream Mach line from the 
triple point. As co is further increased, there is no solution 
until the extreme sonic value is reached, when a reflected 
shock of zero strength again becomes possible. This may 
be seen in Fig. VI-16, where theory and experiment are 
compared. The solid curves were plotted according to the 
theory of regular reflection, and are from Fig. VI-11. The 
circles and triangles are experimental data on regular and 
Mach reflections, respectively. The squares and diamonds 

52 



■♦• 

;::: • -4-' :'; H :rfi 

:■: r.r. te ■~ ■ !" ii:':. :::: 'IS f 
.!.:li" txTr i:.r; ;"-':.' ;;.:: ;:.:.:. :.:ir 1:.T -ttti Stt S& Stir. ff:1- !-.rt: ri7T 7y::T. tr -JT+f 

: .... tilt —-(— T^f 

r: ü !** 
^i— 

.-*■:*• ■   ;".?. : 1T: 
_i.i:I: 

r:tx St 4r4"r-' rr-r lit". :;::: 
—1-+—<— 

r4^ 
::•;. ::.':. : i!r^ *£•■ '"'   IT *_': '...7. "£■' 'frr -TT-..i. 

"tt-4-;- 
.■;._:. 

-;^ 

. ..v.: r*- 
:::r 

i::: NÜ- :...Li". Irn- 
LIIIE 

Hi 1 _2i i   1      1 

5tr H-T+T 
r:.. .:. i'.^ 

rfT-j- 
art. 

ST- :.:r:. rrH. •!;;r :.:.::. fn* *i?E 
+4-,-,- 2S -p£.i- -tt.r.'. ... j . ;rr^ 

c a 
c 
H 

i 

3Ü4. 

"::M ■f: : 
'.*. ~.'. is ■.■■■:. 1= !•■• 

!.[ ,r. r it5 Er- ~fl£ +rtt. tf^..i. 
> 

' :-t --"ft CT:.^; 

:.i:: '-:'.: 
rtrf ̂ *i "^'i. 

ri-j / > • 
!"'i~ 

; - 
• * !■;■ 

:':ix rr ii' > "."ir 

.H 
-'■::-' 

: :;^*" 

■    1 D 
X) 
D 
II 

"4 :.:|' 

:^* ::■  ( !." [.. 

::.; < 

^N ::fr 
^^S 

■r1 

r: 
i 

< - 

I 

^_ 
\^ 

  -•J S-- —- 1 

.! \ 

"71 

x. ' /v 
X. ' |\; 

; 

tß       , 
/  1 

-\ y 
ö-.o 
ii    ro i 

t/ ._... 

w  o T —- \l 

,  -"'ii- 

i 

i o <~l 
/ V rf- X 

.._. 
\   1       \ 

! ■■"■"!     »    ß ........ 

4-?-o 11    to 
!   d 

!      , 

i j 
.... ....> V 

\ 

!w 

... 
n i 

*— 

• o 
II 

... 

1  

...... 

.._.... 

. 

—-^ ^ 
i   i ...  ..:...        j ... 
1             1 
1             1 

o 
oo 

IO 

u II 

N s: 

(0 £ 
S 

IO 
(0 

UJ 

C9 
UJ 
Q 

O ^^ (0 •> s; o1 

O 

IO 
IO 

5u 

•s 

o 
IO 

IO 

00 0) CM o* 

S33M93Q «X 

53 



30      40       50       60 
w. DEGREES 

Fig. VI-16. 
Comparison of theory and experiment in regular 
and  Mach reflection, y = 1.4, from Bleakney and 
Taub. 

represent values of w and w' at which the total flow 
behind the incident shock is just sonic with respect 
tc an observer moving with the triple point, and beyond 
which no solutions for w exist. The decision on the point 
at which regular reflection ends and Mach reflection 
begins is based on the extrapolation to x = 0 of the curves 
ofFig.VI-15. 

For strong shocks, the agreement of the experi- 
mental data for a > a« with the three-shock theory curve 
is fair, but certainly not as good as that for regular 
reflection. The three-shock theory is very inadequate for 
weak shocks, and it has been criticized because it does not 
take viscosity and heat conduction into account. 
Although this may be a crucial defect, one would expect 
to see some evidence of their neglect in the comparison 
between theory and experiment in the case of regular 
reflection also. 

More information on oblique shock reflection pro- 
cesses may be found in the publications of Bleakney and 
Taub, Courant and Friedrichs, Polachek and Seeger, and 
White. 

54 



VII. Some Compressible-Flow Solutions 

A. The Shock Tube. 

A cylinder is divided into two semi-infinite sections 
by a diaphragm (Fig. VIM). Initially, gas is at rest on 
both sides, all at the same temperature. To the left of the 
diaphragm, the gas is initially at a higher density and 
pressure p. and p., than on the right, p+ and p+. On both 
sides the specific internal energy is l0. 

At t = 0, the diaphragm is removed, and at any later 
lime there is observed a shock, s, moving to the right; a 
contact discontinuity, c, moving to the right; and a 
rarefaction wave, bounded by points a and b, moving to 
the left. 

There is no significant length to the system (the 
appearance of the configuration at a later time is a 
magnification of an earlier appearance), so that each point 
moves with constant speed. The rarefaction wave on the 
left was discussed in Chap. V. The contact discontinuity 
in density is tentatively allowed because similarity argu- 
ments cannot remove it. We shall see that, if the density is 
assumed continuous at c, the problem is overdetermined. 
The point at c behaves as if it were a piston pushing with 
uniform speed, and thus produces a shock, as discussed in 
Chap. VI. 

Fight unknown quantities are to be determined: pL, 

P.          c t 

1 
1 1 

P+ 

1  
INITIAL 

P- b 

I x 
I DIAPHRAGM 
I POSITION 
I 

L I n. R S 

LATER 

Fix I'//-/. 
The shock nihe. 

"L> PL> *L and PR> 
U

R> PR> *R- Through the equation of 
state, two of these, IL and IR, can be eliminated. Since no 
gas passes over the contact discontinuity, we must have 
UL = UR (we caI1 them both uc). Also the pressure must 
be continuous across the contact discontinuity (other- 
wise, there would be an infinite acceleration); we put 
PL 

=
 PR =PC- 

WC
 

are tnus left with four unknown 
quantities, pL, pR, uc, pc, for which four relations are 
needed. These are obtained as follows (we assume a 
polytropic gas). Across the shock, we use the relations of 
Chap. VI in the forms 

and 

(P+ " Pc) 

P+ - Pc 

a-i). «2 (VIII) 

p+ 

P+ 
+   Pc p+ H- pR 

Across the rarefaction, entropy is conserved, 

(Vll-2) 

c     \pj (VII-3) 

Finally, a characteristic line dx/dt = u + c goes across the 
rarefaction (sec Chap. Ill) so that 

TP- x     2       pP =   u.. +  V — 
P. c      7 - I \   p. (V1I-4) 

We thus have the required four relations among the four 
unknowns. It is convenient to define 

— = P- 
P+     P+ 

IV 

IV 

(V1I-5) 

so   that   A   is   known   from   the   initial   configuration. 
Straightforward   manipulation  of Fqs.  (Vll-1)  through 
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(VII4) results in an equation determining P in terms of X 
and y: 

(I ~ P)2 

7(1+P) - 1 + P 

*L 
(7-1) [ -&*'% (VII-6) 

Some values of P for various values of X and y are shown 
in Table VIM. 

With P determined, the remaining unknown quan- 
tities are easily calculated: 

pR = p+ T(1+F> + (P-1)     , 
PR

     
P+7(l+P) + (P- 1) (VII-7) 

PL = P+ (PA7"1)? 

h = lo ^t 
^R 

L      l0PL 

«<^M 

(VW-8) 

(YII-9) 

(VII-IO) 

(VII-11) 

TABLE VIM 

TABLE OF VALUES OF P FOR VARIOUS VALUES OF A AND T 
THE SHOCK TUBE PROBLEM 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

7=1.1 

1.40944 
1.71578 
1.96809 
2.18575 
2.37880 
2.55323 
2.71298 
2.86078 
2.99862 
3.12799 
3.25006 
3.36576 
3.47585 
3.58093 
3.68152 
3.77805 
3.87091 
3.96039 
4.04679 
4.13035 
4.21127 
4.28974 
4.36594 
4.44001 

7=1.2 

1.40648 
1.70710 
1.95271 
2.16326 
2.34904 
2.51617 
2.66864 
2.80921 
2.93989 
3.06220 
3.17731 
3.28614 
3.38946 
3.48787 
3.58188 
3.67194 
3.75840 
3.84159 
3.92177 
3.99920 
4.07407 
4.14657 
4.21688 
4.28513 

7=1.333 

1.40320 
1.69751 
1.93575 
2.13850 
2.31632 
2.47546 
2.61998 
2.75268 
2.87560 
2.99026 
3.09784 
3.19926 
3.29528 
3.38651 
3.47346 
3.55656 
3.63618 
3.71263 
3.78618 
3.85706 
3.92549 
3.99164 
4.05568 
4.11776 

7=1.4 

1.40179 
1.69339 
1.92846 
2.12787 
2.30229 
2.45803 
2.59917 
2.72853 
2.84816 
2.95958 
3.06397 
3.16226 
3.25521 
3.34342 
3.42740 
3.50759 
3.58434 
3.65796 
3.72874 
3.79689 
3.86262 
3.92613 
3.98756 
4.04706 

7=1.5 

1.39991 
1.68789 
1.91875 
2.11372 
2.28362 
2.43484 
2.57151 
2.69645 
2.81174 
2.91889 
3.01908 
3.11326 
3.20217 
3.28641 
3.36650 
3.44286 
3.51585 
3.58579 
3.65293 
3.71751 
3.77973 
3.83978 
3.89781 
3.95396 

7=1.667 

1.39727 
1.68018 
1.90514 
2.09391 
2.25753 
2.40248 
2.53294 
2.65178 
2.76107 
2.86233 
2.95676 
3.04529 
3.12865 
3.20746 
3.28223 
3.35337 
3.42124 
3.48614 
3.54835 
3.60808 
3.66554 
3.72090 
3.77432 
3.82594 

7=2.0 

1.39330 
1.66859 
1.88474 
2.06428 
2.21857 
2.35425 
2.47558 
2.58546 
2.68597 
2.77865 
2.86468 
2.94500 
3.02035 
3.09132 
3.15841 
3.22204 
3.28256 
3.34026 
3.39541 
3.44822 
3.49889 
3.54759 
3.59447 
3.63967 

56 



The shock moves with absolute speed 

_ U
CPR 

PR-P+ 
(VIM 2) 

The point c moves with absolute speed uc, while the 
points a and b move with sound speed relative to the gas 
or with absolute speeds ' 

va   =  "C-VT(7-1)IL 

vb   =-V?(7-l)I0 

B. Shock Hitting a Density Discontinuity. 

(VIM 3) 

(VIM4) 

<• ,u- ^"f P Down in Density-In the simplest form 
oi this problem, a one-dimensional shock passes through a 
uniform polytropic gas which is cold and at rest (Fig 
VII-2). At some point, it strikes a discontinuity in 
material, beyond which there is another (different) 
uniform polytropic gas which also initially is cold and at 
rest. Our problem is to determine the dynamics after the 

INCOMING 
SHOCK     | 

'-.0 J'+.O 

BEFORE STRIKING 

P- b 

y ' y 
11 rz 

i 
I 

^_s. 

i2. 

AFTER STRIKING 

nTi' .J? tentatively as*™e that a rarefaction is 
reflected. The condition under which this is the case will 
follow from the analysis. In any case, a shock will be 
transmitted mto the material to the right. 

The incoming shock is characterized by the infinite 
shock relations of Chap. VI: 

I. = &u2 

y  y 
I      2 

Fig VII-2. 
Shock hitting a step down in density. 

i-fcV 
(VIM 5) 

The analysis follows closely that for the shock tube 
problem. The same quantities (with the same symbols) are 
unknown, and the four equations determining them are 

■6-sH 
- Ji 7+1 

Af      7,-1 

(VIM 6) 

Define, for convenience. 

f7,Pc 

P = P. 

A - P-.o <*. + » 

(VIM 7) 

(VIM8) 

where A is known from the input conditions and P is to 
be determined. Some manipulation shows that P is 
determined in terms of A and yt by 
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&-l£il* 
ft -w^ (VIM 9) 

If, now, a rarefaction is indeed reflected, then P> 1 js 

reared This corresponds to A > 1, which, therefore, 

la ue qof,rp fo°ndlti0n {°\ a refleCted rarefaction- Some 
Table VH.2.      Va"0US **"* °f A and * are Siven in 

calculated! P kn0W"' ^ °ther Unkn0W" qUantities can be 

PL = P-(p) 
-% 

'«■Pt'«(ri) 

Uc=   «\/p- 

v(right shock) = uc (^ j 

(VII-20) 

2. The Step Up in Density. A second case must also 
be conS1dered in which a shock is reflected from thr 
d.scontinuity (Fig. VII-3). It is expected that this will 
occur if A < 1. We shall indeed see the general result 

P+,0(T2 + 1) 

> 1  rarefaction reflected , 

<  1 shock reflected   .       (VII'2I> 

In the reflected-shock case, the four conditions relating 
the four unknowns are all derived from shock relations: 

(VII 22) P+,o 

\ + 1 

72-l 

P+,0 
= (72 + 1 

p. - Pc 

P. + Pc  " 7| 
p- - PL 

p. + PL 

(Pc K - u.)2 

(VII-23) 

(VII-24) 

(VII-25) 

U,tvT\ü 3     b m°Ve t0 the ,eft with sound «Peed 
he™    °K 

hC material- °ne may notice> however, that 
the pomt b moves to the right relative to the rest fra^ne if 
71 ^ •£• 

.      |[ p+,o * ° (the shock hits a free surface), one can 
show h,t the free surface will move with the sum of he 
rnatenal speed ,n the shock plus the escape speed of the 
shocked material. This is proved as follows. As p+    J 0 
A -> oo and p _> «, From E   m        we P+,o    u, 

so that, from Eq. (VII-20), 

u,.-*u      1  + 

Using the infinite shock relations, this becomes 

2c 
u -HI. +  -- 

7,-1 

with the second term being the escape speed. 
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Fig, VII-3. 
Shock hitting a step up in density. 
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TABLE VII-2 

TABLE OF VALUES OF P AS A FUNCTION OF A FOR A SHOCK 
HITTING A STEP DOWN IN DENSITY 

7 = 1.250 7 = 1.333 7=1.500 7=1.667 7=2.000 

1.0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 
1.5 1.2882045 1.2750705 1.2580316 1.2472442 1.2341310 1.2174935 
2.0 1.5505846 1.5247747 1.4916464 1.4708844 1.4458736 1.4145174 
2.5 1.7959375 1.7578295 1.7093201 1.6791617 1.6430971 1.5983304 
3.0 2.0288833 1.9787944 1.9154657 1.8763564 1.8298775 1.7726792 
3.5 2.2522209 2.1904222 2.1127387 2.0650386 2.0086565 1.9398023 
4.0 2.4678047 2.3945335 2.3028889 2.2468995 2.1810376 2.1011655 
4.5 2.6769430 2.5924086 2.4871450 2.4231241 2.3481425 2.2577923 
5.0 2.8806018 2.7849914 2.6664094 2.5945823 2.5107933 2.4104305 
5.5 3.0795186 2.9730018 2.8413699 2.7619358 2.6696142 2.5596475 
6.0 3.2742735 3.1570048 3.0125653 2.9257024 2.8250935 2.7058856 
6.5 3.4653330 3.3374538 3.1804267 3.0862963 2.9776209 2.8494981 
7.0 3.6530789 3.5147199 3.3453069 3.2440559 3.1275145 2.9907721 
7.5 3.8378288 3.6891114 3.5074982 3.3992614 3.2750376 3.1299453 
8.0 4.0198505 3.8608880 3.6672470 3.5521485 3.4204111 3.2672169 
8.5 4.1993722 4.0302708 3.8247621 3.7029177 3.5638232 3.4027559 
9.0 4.3765911 4.1974501 3.9802239 3.8517410 3.7054348 3.5367071 
9.5 4.5516785 4.3625917 4.1337887 3.9987679 3.8453858 3.6691960 

10.0 4.7247842 4.5258403 4.2855929 4.1441287 3.9837982 3.8003321 
10.5 4.8960402 4.6873235 4.4357571 4.2879385 4.1207794 3.9302113 
11.0 5.0655650 4.8471550 4.5843880 4.4302994 4.2564244 4.0589188 
11.5 5.2334627 5.0054362 4.7315807 4.5713015 4.3908179 4.1865302 
12.0 5.3998282 5.1622572 4.8774207 4.7110268 4.5240358 4.3131131 ^ 
12.5 5.5647468 5.3177006 5.0219848 4.8495481 4.6561461 4.4387284 
13.0 5.7282946 5.4718405 5.1653426 4.9869318 4.7872107 4.5634309 
13.5 5.8905423 5.6247437 5.3075579 5.1232380 4.9172856 4.6872705 
14.0 6.0515549 5.7764724 5.4486874 5.2585220 5.0464219 4.8102927 
14.5 6.2113895 5.9270829 5.5887846 5.3928334 5.1746658 4.9325388 
15.0 6.3701012 6.0766265 5.7278974 5.5262186 5.302060 i 5.0540466 
15.5 6.5277389 6.2251517 5.8660710 5.6587197 5.4286446 5.1748512 
16.0 6.6843492 6.3727016 6.0033460 5.7903757 5.5544552 5.2949846 
16.5 6.8399746 6.5193177 6.1397613 5.9212236 5.6795257 5.4144765 
17.0 6.9946546 6.6650380 6.2753517 6.0512961 5.8038871 5.5333548 
17.5 7.1484261 6.8098972 6.4101498 6.1806250 5.9275685 5.6516445 
18.0 7.3013235 6.9539289 6.5441876 6.3092387 6.0505965 5.7693698 
18.5 7.4533786 7.0971634 6.6774924 6.4371653 6.1729967 5.8865527 
19.0 7.6046226 7.2396300 6.8100919 6.5644294 6.2947920 6.0032140 
19.5 7.7550827 7.3813557 6.9420109 6.6910555 6.4160051 6.1193732 
20.0 7.9047856 7.5223654 7.0732732 6.8170656 6.5366563 6.2350484 
20.5 8.0537572 7.6626829 7.2039008 6.9424808 6.6567654 6.3502570 
21.0 8.2020191 7.8023314 7.3339150 7.0673210 6.7763500 6.4650146 
21.5 8.3495963 7.9413313 7.4633350 7.1916050 6.8954280 6.5793366 
22.0 8.4965079 8.0797037 7.5921801 7.3153499 7.0140155 6.6932375 
22.5 8.6427743 8.2174676 7.7204673 7.4385730 7.1321279 6.8067307 
23.0 8.7884153 8.3546399 7.8482143 7.5612902 7.2497800 6.9198289 
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TABLE VII-2 (cont.) 

23.5 
24.0 
24.5 
25.0 

7=1.250 

8.9334476 
9.0778891 
9.2217558 
9.3650625 

7=1.333 

8.4912387 
8.6272797 
8.7627795 
8.8977515 

7=1.500 

7.9754357 
8.1021484 
8.2283649 
8.3540997 

7=1.667 

7.6835159 
7.8052649 
7.9265502 
8.0473853 

7=2.000 

7.3669853 
7.4837573 
7.6001081 
7.7160494 

7=3.000 

7.0325445 
7.1448885 
7.2568723 
7.3685062 

The relation between A and P can be derived as A question of interest is: How can this type of 
interaction be used to produce a stationary shock for 
study? This can be accomplished if the reflected shock, 
sL, moves with zero speed. According to Eq. (VII-27),the 

7, P + 7, ~ P + 1  "    (V11"26)      condition for this is p.u. = pLuc. The result of some 

Since P < 1 is required for the shock reflection, this 
means A < 1, completing the proof of Eq. (VII-21). Some 
values of P for various values of A and y. are given in 
Table VII-3. 

With P known, the other quantities in the system 
can be calculated 

=    fr,(1+p) + 0-P)1 
L    p* L*y, (i + P) - (l - P) J 

°R = P+.°(TFT) 

"<• = u */p- 

*-M 
(VII-27) 

v    (absolute) = M ~ »L^ 
SL P. " PL 

In the special case that p+ 0 = «> (the shock strikes a rigid 
wall and reflects), then A = 0 and P = (>,- l)/(37,- 1). 
In this case, 

P,   -P. (^i) 

v   (absolute) = - (r  - i)u 

(VII-28) 

J 

algebraic manipulation shows that this occurs if 

A _ A.ofy + 0     (7. - l)3 
A = „   i   a,TT = ~k • (VII 29) M% +0        3-7 

C, The Reactive Shock, or Detonation. 

We first examine a detonation produced by a 
rapidly moving piston. Then the conditions on each side 
of the detonation front are uniform and we assume that 
the detonation itself takes place instantaneously along the 
moving discontinuity (Fig. VII-4). 

Actually, the total internal energy per unit mass on 
the right side is not zero but K, the chemical energy per 
unit mass. With this change, the shock relations of Chap. 
VI are directly applicable 

v<Ps ~ P0) 
= P*}h 

psO>s-i°o) = Po/°sus 

"2 v W 
L - K 

I ■ I. 

P = P, 

u = u, 

p' p. 

I = O 

p = O 

u - O 

P-- /•„ 

Fig. VII-4. 
The reactive shock. 
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TABLE VII-3 

TABLE OF VALUES OF P AS A FUNCTION OF A, 
FOR VARIOUS VALUES OF 7 

0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 

7=1.250 

0.22817823 
0.29844043 
0.35700704 
0.40931598 
0.45751683 
0.50273045 
0.54563453 
0.58667613 
0.62617028 
0.66434928 
0.70139051 
0.73743339 
0.77258996 
0.80695192 
0.84059566 
0.87358555 
0.90597654 
0.93781598 
0.96914509 

7=1.333 

0.25154769 
0.32147867 
0.37923189 
0.43050937 
0.47755744 
0.52154330 
0.56317158 
0.60290488 
0.64106907 
0.67790368 
0.71359129 
0.74827505 
0.78206976 
0.81506931 
0.84735167 
0.87898245 
0.91001760 
0.94050523 
0.97048716 

7=1.500 

0.28554920 
0.35433465 
0.41052409 
0.46006685 
0.50529533 
0.54741817 
0.58716127 
0.62499997 
0.66126821 
0.69621068 
0.73001337 
0.76282177 
0.79475227 
0.82589979 
0.85634302 
0.88614805 
0.91537109 
0.94406041 
0.97225785 

7=1.667 

0.30943020 
0.37700560 
0.43186981 
0.48005747 
0.52392751 
0.56470001 
0.60310539 
0.63962191 
0.67458442 
0.70823797 
0.74076854 
0.77232137 
0.80301248 
0.83293639 
0.86217128 
0.89078283 
0.91882674 
0.94635085 
0.97339654 

7=2.000 

0.34113009 
0.40665846 
0.45952251 
0.50576849 
0.54775333 
0.58669242 
0.62331130 
0.65808478 
0.69134403 
0.72333108 
0.75422930 
0.78418162 
0.81330204 
0.84168326 
0.86940192 
0.89652221 
0.92309854 
0.94917759 
0.97479967 

7=3.000 

0.38587915 
0.44779682 
0.49744979 
0.54073042 
0.57992713 
0.61621772 
0.65030237 
0.68263863 
0.71354483 
0.74325309 
0.77193891 
0.79973883 
0.82676156 
0.85309509 
0.87881306 
0.90397534 
0.92863403 
0.95283313 
0.97661072 

We assume that us is known; it is the velocity of the 
driving piston. We assume further that the detonation 
products can be represented by a polytropic state 
equation. Experiments show that this is a reasonable 
assumption for many explosives. 

These equations can be solved as follows (we have 
putPs=(7-l)psIs): 

ps _   r(2K/us
2) + (7+l)/(7- -D1 .    (VH-30) 

P0      L          2K/us
2 + 1 J 

ls = K + *u2     , (VII-31) 

v = (7-Du
K
+^us     • u            z        > 

(VII-32) 

In the limit of K->-0, these reduce to the familiar 
relations for an infinite shock. With K > 0, the detonation 
front moves faster than the infinite shock, and the density 

behind the front is correspondingly less. 
The results predict that, as us -> 0 (for K fixed), the 

detonation speed becomes infinite. We thus expect that 
the results are in error for small piston speeds. Indeed, 
there is another reason for believing this: The sound speed 
just behind the detonation is 

^■fr-lMK + '^u2) 

For sufficiently high piston velocities, us + cs is thus 
greater than v; that is, signals from the piston can 
overtake the detonation front from behind and thus 
influence it. For small piston velocities, the above model 
would predict us +cs < v and no signal could overtake the 
front from behind. Thus, for piston speeds less than v-cs, 
no signal from behind the front can catch up with it, and 
the detonation process must proceed independently of 
the motion of the piston. We thus conclude that for an 
underdriven detonation, the front must move exactly as 
for a critically driven detonation; that is, one for which 
cs + us= v- (This condition, which determines the motion 
of an underdriven detonation, is called the Chapman- 
Jouguet condition.) Substitution of the conditions for an 
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overdriven detonation into the Chapman-Jouguet relation 
allows derivation of the following u = 

7 + 1 

v = yj2(y2 -1)K    . 

u. = S y    +     ! ' 

n - y+ l 

1   = -^L K s      7 +  1 K       ' 

Ps 
= 2

(T - 0 P0 K 

(VII-33) 

(VII-34) 

(VII-35) 

(VII-36) 

(VII-37) 

Just as for an infinite shock, the compression depends on 
7 only. 

Determination of the profile behind an underdriven 
detonation can be made by means of the similarity 
method. We outline the procedure briefly. The equations 

^ + ^ = n 
at     ax     ° 

3u 3u dp 
~ + pu — = - -£ at 

p = ApT 

dx dx 

are applicable, where A is a constant determined by the 
value of K. The substitution y = x/t and the assumption 
of dependence upon y only lead to 

-y^  +  ^H =  0 
dy      dy 

*' dy dy 

p ■ Ap? 

If these are to represent a detonation, then it is necessary 
that the boundary conditions be satisfied: 

aty = v(=\/2(72 -1) K) 

7 +  1 P = s  p 

P = 2(7 0PoK 

I=_27__ 
7 +  1 

K 

Thus the value of A (which determines the amount of 
entropy behind the detonation) must be given by 

A - 2(7 - 1) (--fj-J   pl-yK      . 

The solution can be carried through, and the boundary 
conditions can indeed be satisfied. The result is 

-,-MH 
p = 

7 + 1 
(7-1) + v 

TV 

2_ 
7~i 

The solution continues back to the point where u = u 
the piston velocity. If p = 0 at the piston (so that thPe 
detonation takes place against a vacuum), the free surface 
of the gas moves such that 

X     _ ,     V 
t 7- l 

For a detonation taking place against a rigid wall, so 
that up = 0, the velocity profile at some time after t = 0 is 
shown in Fig. VII-5. The point at which the velocity 
drops to zero is x = a. We see from the similarity solution 
that a = YL vt. What is the total displacement of material 
caused by the passing over of such a detonation wave? 
This is-determined by solving the differential equation: 

dx 
dt u(x,t) 

7 

= 0 

-J_. fee _   \ 
7 + 1   V t 7 for — < x < vt 

otherwise 

Fig. VII-5. 
Fluid velocity profile. 
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This has the solution 

7Xr 
x = © 

2_ 
7+1 vt 

1 

with the boundary condition x = x0 at t = x0/v. When the 
wave has just passed by a particle, x = % vt, so that the 
final x of the particle is given by 

X =~l u 
2_ 

7+1 2x 

With reference to Fig. VII-7, we choose cylindrical 
coordinates with origin at the corner; u and v are the 
components of velocity in the r and 0 directions, 
respectively, and the equations are 

3t      r    9r        r   90   ~ °     ' 

9u 
P9t  + 

/  9u     v 9u\     pv2 

pVuäT+7wr T + c>¥ = 0   . 

9v ^      / 9v      v 9v\     puv     c2 9p     „ 

9t \   9r      r 90/       r        r   90 

or c2 = 7 Ap 7-1 

x 
x„ 

7      (2) ? + J 

7+1 
7-1 

(VII-38) 

A graph of this result is shown in Fig. VII-6. 

D. Steady Flow Around a Sharp Corner. 

A nonviscous, nonconducting, semi-infinite poly- 
tropic gas flowing parallel to a flat surface approaches a 
corner in the surface. If the surface bends into the gas 
flow, then the wedge theory (Chap. VI) may be appli- 
cable. If the surface bends away, then a steady expanding 
flow may occur. (In both cases, the gas speed must be at 
least that of sound for a stepdy state to be present.) The 
latter flow, which concerns us here, is often called 
Prandtl-Mcyer flow. 

where A is a fixed constant related to the entropy of the 
gas. In steady-state flow, the time derivatives vanish. Also, 
since there is no length scale to the system, its appearance 
must be independent of magnification; that is, u, v, and p 
must be independent of r. With these conditions, the 
equations simplify considerably: 

4+S) + äe)+v§ = ° 
du 

, dp 
+ c2 -~~ = 0 PV(U + dD- *   60 

From the first and third of these, 

fr1-«-)!-« ■ 

1.2 
o 
x 

X 
I.I   ~ 

1.0 

Fig. VII-6. 
Variation ofx/x0 with y. 

Either v = c,  or p is identically constant. The latter 
alternative leads to the trivial solution of flow with no 

• s / s //////// //$^ r      N 

Fig. VII-7. 
Prandtl-Meyer flow configuration. 
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corner at all, parallel to the initial boundary. It is 
applicable up to the point at which v = c. In the 
subsequent flow, p then changes and v = c persists. Thus, 
the original flow persists up to the angle, 0M, such that 

v = v„cos0M=c„ 

or 

eM = cos "® (VII-39) 

This is the angle of the Mach line from the corner. 
Beyond that angle, the gas begins to turn, as shown in Fie 
VII-8. 

With v = c, the equations become 

dpc 
pu+ —= 0 

du     n 

dl = 0 

Now 

dP°   -  L2      dc 

dö""bpd*   ' 

where we have introduced the abbreviation 

b2 

Thus 

L»    =11! 
7 "  1 

u + b ,2 dc _ 
de 

du       n C-d?=° 
These have the solution 

e 
u - bA sin jr + bB 

e 
cosb 

e 
c = A cosr" ■ -B 

e 
sinF 

(VI1-40) 

where A and B are constants of integration. The general 
boundary conditions are 

At0 = 0M  ,    v=c = c0  ,   u = vosin0 M 
(VI1-41) 

We look first, however, at the case 6M = 0 (i.e., v0 = c0). 
For this simpler case, the solution becomes 

u = b c0 sin-r- 

V = C = C0 COS "j- 

(VII-42) 

How does the radial distance to a streamline vary with 
angle? From 

dr 

and 
dt u 

do 
dt 

V 

r 

dr _ 
d0 ~ 

ur 
V 

Fig. VII-8. 
Prandtl-Meyer velocity vectors. 

For the solution in Eq. (VII-42), this can be integrated to 
give 

= r0(cos|)" (VIM3) 

Note that the sound speed, and thus the density, 
drops to zero at 6 = b7r/2; the gas will turn through no 
greater angle than that. One can show that the angular 
deflection of the streamline from horizontal, a, is given 
by 

a = 0--|+tan-' A cot-£) (VII-44) 

For the more general boundary conditions, Eq. (VII-41), 
analogous formulas may  be  derived. Alternatively, the 
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supersonic input flow can be assumed tö have turned 
from sonic, through some angle 0O, and subsequent 
turning measured from the radius vector at -60. To 
accomplish this it is useful to express 6 as a function of 
local Mach number, MIf defined as the ratio of the gas 
speed to the sound speed: 

M; # 
+ v2 

Combination of this with Eq. (VII42) leads to 

Thus, if the incoming Mach number is M0, then 

*o = b tan V M
2 

e = b ♦   -1   /M
2
 - 1 

tan    yj-zr- 

In turn, one can find the fictitious sound speed from 
which this turn started, and the fictitious initial radius for 
any streamline, and continue the solution as if from the 
initial sonic flow. This alternative procedure is especially 
useful for situations for which tables have been provided 
for Prandtl-Meyer solutions turning from sonic. 

Finally, for reference, we include the formula for a 
as a function of M, derived from Eqs. (VII-44) and 
(VII-45): 

(VII-45) 
a = b tan ■v M

2 

-  tan 
1 VM1 

(VII-46) 
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VIII. Some Incompressible Flow Solutions 

For viscous incompressible flow 
dimensions, the appropriate equations, 
(III-31),and (111-32), are 

in  two  space 
Eqs.  (111-30), 

while an equation for to can be obtained by combining 
the two momentum equations and using the incompress- 
ibility condition: 

3x    oy 

3u 3u 
r-   +   U 5-   +   V  5- 3t ox 9y 

I« + M - „ fa u  . a2u\ 
ay + ax - v\w+jp) 

3v 
at 

3v 
U5- + 

3x 
r3y_ 
'3y T 3y 

30 
g + W av

2/ 

where g is the acceleration of gravity, here taken to be 
positive downwards. In this chapter we consider a few 
representative solutions of these equations, chosen be- 
cause of their value for reference or because of their 
usefulness in illustrating techniques. 

We note first, however, that there are two general 
ways in which the equations can be solved, in addition to 
those discussed below. 

In one of these, a stream function, \p, and vorticity, 
to, are introduced in such a way that 

u   = 3i// 

ay 
» 

v  = 
3x ) 

w   = 3v 
3x 

3u 
3y 

Note that, since 

d0 _  30 
3x dx  + 

30 

9y 
=  -  vdx  + udy 

dy 

3a; 
3t 

+  u 
3x 

+  v 
3w  _     /32co       3jw\ 
3y "Vdx2 9yV 

This so-called Helmholtz vorticity equation shows, inci- 
dentally, that a fluid without vorticity remains without 
vorticity except for the effects of viscosity; for such a 
fluid the dynamics are determined by solving the equation 

ÜL + h. = 0 
3x2      3y2 

More generally, the stream-function and vorticity equa- 
tions form a coupled set which can be solved by various 
means. (It should be noted that for compressible fluids or 
for those with buoyancy effects, there are additional 
source terms to the Helmholtz vorticity equation.) 

The second method holds for flows in which the 
vorticity identically vanishes. In general, co= VX ü, so 
that if co = 0, then there must exist a function <f> (the 
velocity potential) such that 

In such cases, <I> satisfies the equation V2* = 0, and again 
solutions can be obtained. 

We also may note that the pressure, y, can be 
obtained as an instantaneous function of the velocity 
field. The equation for this is derived by taking the 
divergence of the vector momentum equation, with the 
result (in component notation) 

aV _ 
3x? ~ 

J 

3Uj   3u: 

3x. Ifx. 

from which \p can be obtained. 

The value of \p is everywhere the same along any line for 
which dy/dx = v/u; i.e., along any line that is everywhere 
directed parallel to the velocity vector. Accordingly, the 
lines of constant \p are called streamlines. An interpreta- 
tion can also be given for the vorticity; namely,that it is 
the local angular velocity of the fluid. The advantage of 
introducing \p is that the continuity (incompressibility) 
equation is identically satisfied. In addition, \p satisfies 
the equation 

a2«/'     a2,/, 
3x2   +  3^   =  - w       . 

A. Parallel-Flow Problems. 

Parallel-flow problems can be particularly easy to 
solve. Exceptions are found in investigating the stability 
of such flows, but these will not be considered here. 
Consider the example in which v = 0, and u is a function 
of y and t only. Then the three equations reduce to one: 

3u 
3t 

30 
3x 

= k 
3y2 
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1. Couette Flow. In this case, 90/9x = 0, and the 
flow is ,in steady state between parallel walls moving in 
their own planes with speeds u0 (at y = 0) and Ui (at 
y = h). The full solution, then, is 

"o +(ui-u0)Y 

a linear velocity profile. 

(VIII-1) 

2. PoiseuiUe Flow. The flow is again between 
parallel plates, in this case both at rest, and is driven by a 
constant pressure gradient: 90/3x =-X. Then 

32u 
3y 

The   solution,   with   appropriate   boundary   conditions 
(namely, u = 0 at y = 0 and y = h),is 

u=-^(y2-hy) (VIII-2) 

This is the well-known parabolic profile. Note that the 
central velocity (the maximum) is 

l'L'        Xv 

A similar result, for flow in a cylindrical pipe, has been 
used as a theoretical basis for measuring the viscosity of 
fluids. 

3. The Rayleigh Problem. This is a time-dependent 
problem in which the fluid is initially completely at rest, 
and one wall commences to move in its own plane with 
velocity u(). Then 

3u 
at <V 

is to be solved. Since there is no characteristic length or 
time to the problem, we suspect a similarity variable to be 
appropriate. Assume this to be | = y/\/t7Then 

an _ y      du 
at 2(.V2   d£ 

a2u 
ay- ~ " 

1   d\i 
d$2 

and we get 

du 
2 "    di d?2 

Since neither x nor t explicitly remains, the similarity 
variable is indeed appropriate. The equation can be 
integrated once to give 

v fir? ©- 1   v2 
T %    + constant 

or 

|=Kiexp(-fe)   • 

The second integral is 

u= K2 +K.J      exp(-|l)d?    , 
o 

where Ki and K2 are constants of integration. Applying 
the prescribed conditions (at x/VT= °°, u = 0 and at 
x/y/t =0, u = u0) we get 

u = u-, 

x 

if* s2 
■= d? (VIII-3) 

where a slight change in variable has been made. Thus a 
boundary layer grows along the wall. If we measure its 
thickness by the point at which 

u = (0.523) u„   , 

then that point occurs at y = \/in. The thickness grows as 
the square root of the time. Meanwhile, the wall has 
moved a distance L=u0t. Thus the thickness can be 
measured as 

or 

L 
D UoL yfRc 

(VIII-4) 

where Re = u0 L/v is the Reynolds number. A similar 
type of flow occurs along a flat plate with sharp leading 
edge, slicing into a flowing fluid. 

B. Free-Surface Problems. 

We consider the motion of a fluid in a tank of depth 
D. Viscosity is considered negligible. In addition, we 
restrict our study, here, to very slight motions, so that 
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terms containing two velocities (the convection terms) are 
negligible. The equations, then are 

9x     9y 

9H +M = 0 
at    9x    u 

£y_ + H _ _ 
g 9t      9y 

1. Surface  Waves.   If the  pressure  were  purely 
hydrostatic, then it would be given by the expression 

<*> = gz(x,t)-gy   , 

where z(x,t) is the height of the free surface above the 
mean free-surface position (at y = 0, so that the bottom 
of the tank is at y = -D). The pressure will not, however, 
vary in this simple fashion, so we write instead 

0 = gz(x,t)-gy + f(y)eik<x-ct>     , 

where k is the wave number (27r/wavelength) and c is the 
wave speed. 

Consequently, the two velocity equations give 

dt      8 9x 

9v    df  ik(x - ct)     „ 
ä    dye =0 

Accordingly, we must take, for identity in x and t, 

u = u0(y) eik<* ' ct>   ' 

v = v0(y)eik(x"ct) 

z(x,t) = z0eik<x - ct> 

As a result, 

-cuo + gzo + f=0   , 

-ikcvo + -^-0     . 0     dy 

Also, from the incompressibility equation, 

dv« 

(VIII-5) 

(VIII-6) 

(VIII-7) 

Combining Eqs. (VIII-5), (VIII-6), and (VIII-7) to elimin- 
ate fand u0, we get 

dy2 
=  1,2 k2v 

or 

v0 = Aeky + Be"ky 

Since v0 = 0 at y = -D, we obtain 

Ae-kD + BekD = 0   _ (VIII-8) 

We also need the free-surface condition that at y = 0 
9z 
9T=V 

or 
-ikcz0 = A + B = A(l~e"2kD) (VlII-9) 

Returning   to   the   incompressibility   condition,   Eq. 
(VIII-7), we can find u0: 

u0 = i(Aeky-Be-kv)   . 

Putting this and Eq. (VIII-9) into Eq. (VIII-5) and setting 
y = 0 (where f vanishes) we get 

-ci(A-B)-1L(A + B) = 0 

or, using Eq. (VIII-8), 

c2 = £ tanh (kD) (VII I-10) 

This is the general wave-speed formula, valid for deep or 
shallow water. 

2. Surface Instability. From the previous result, Eq. 
(VIII-10), we can readily derive several others of interest. 
For example, if g < 0 (so that the gravity points up 
wards), the c is imaginary and the surface behavior is 
proportional to 

exp [ikx ± tV-gktanh (kD) ] (VIII-11) 

The growing exponentials correspond to the Rayleigh- 
Taylor instability of the interface, which is derived below 
in a different way for two fluid configurations. 

3. Sloshing. Combining two traveling waves, with 
speeds given by Eq. (VIII-10), produces a standing wave 
with oscillation frequency given by kc. Thus the funda- 
mental period of sloshing of fluid in a tank of length L 
(which is the half-wavelength, so that k = n/L) is given by 

2TT 2TT 
Period = kc 

A/? ^ tanh f (VIII-12) 
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C. Sliallow-Water Theory. 

A somewhat different, and simpler, approach to the 
free-surface problems can be taken if the surface waves 
are long compared with the depth of the water. In this 
case, we assume that the hydrostatic pressure equation is 
valid without the necessity of a correction term, 

0 = gz(x,t) -gy   . 

This is equivalent to assuming that v is everywhere very 
small, so that the vertical momentum equation is com- 
pletely satisfied. The equation for u then becomes 

au,     du   .      dz 
— + Ur- + g— = 0 

dx      ° dx at 

This is one of the two required shallow-water equations. 
The other equation comes from the mass conserva- 

tion requirement. For this second equation, we must 
specify the height of the tank bottom above some 
arbitrary reference level, y0(x), as a function of x, 
thereby enabling us to examine the flow over an irregular 
rigid surface. To the order of our approximation, it can be 
shown that u is independent of y, so that u(z-y0)pw is the 
one-dimensional flux of mass past any point. The mass 
per unit tank length there is pwz, so that the conservation 
condition (see Chap. II) becomes 

^ + d["(z-y0)] = n 

dt              to °     ' 

du       du.    3z 
äT + udT + 8äx- = °   ' 

(VIII-13) 

(VIII-14) 

in which we have repeated, in summary, the momentum 
equation. Note the considerable simplification in these 
equations; in particular, there now are only two equations 
for two unknown quantities as functions of only two 
independent variables. Actually, of course, a third vari- 
able, v, remains for which there is the continuity equation 
to determine it: 

dx      dx (VIII-15) 

showing that v is a linear function of height. 
Note the close resemblance of the. shallow-water 

equations to the one-dimensional gas equations, Eqs. 
(111-52). For the special case of a polytropic gas with 
7=2, Eqs. (111-52) become 

dp      dpu 
dt dx 

0 

du   ,      du      q?   dp 
— + u— + -^ — = 0     , 
dt 3x      p0   dx 

while for y0 = 0, the shallow-water equations can be 
written 

dz      dzu 

du        du ^    dz 
dT+u^ + ^=0   • 

Thus, solutions for the shallow-water equations can be 
obtained directly from those for the one-dimensional gas 
dynamics equations provided that in the latter one puts 

y -> 2    , 

One immediate consequence of the shallow-water 
equations is that they predict a wave speed for the 
propagation of low-amplitude disturbances. To see this, 
suppose that z(x,t) = D + e, where e is a small fluctuation 
of the^ order of u, which also is small. Then, with 
yo(x) = 0 and some small terms neglected, the equations 
become 

de        du 
äT+Däx- = ° 

du    dv 
dx    dy 0 du       de 

d7 + gdx- = ° 

But since u is independent of y, this can now be 
integrated directly to give 

v = ~y^ + (function of x and t)    . 

To determine the function of x and t, we note that where 
y = y0(x)> v = u(dy0/dx) (which is derived from the 
requirement that u-n = 0, where n is the unit normal 
vector to the bottom surface). Thus 

or, eliminating u, 

dt dx2 a—gD-sd = o 

which is the wave equation for signals translating with 
speed c given by 

c= ViD (VIII-16) 
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Note, incidentally, that this agrees with the more general 
wave speed formula, Eq. (VIII-10), in the limit that k -»• 0 
(very long wavelengths). 

Numerous useful problems can be solved with the 
shallow-water equations. A most illustrative one is the 
problem of steady flow over an irregular bottom. For 
time-independent circumstances the equations are directly 
integrable: 

u(z ~ vo) = constant , 

&u2 + gz = constant   . 

The first equation describes constancy of mass flux, while 
the second is a form of Bernoulli's law. To evaluate the 
constants, we specify that there is some position at which 
y„ = 0, z = 1} and u = u0. Then 

u(z ~ Vo) = u0D       , 

>Au2 + gz = Hu0
2 +gD   . 

Between these, for example, u can be eliminated, giving a 
cubic equation for surface height: 

m-s + 2gz + 2gD (VIII. 17) 

In general, this enables the surface height to be deter- 
mined uniquely as a function of the bottom height. To 
see one of the most interesting properties of this 
equation, suppose that the distortions of the bottom (and 
thus of the surface) are very slight. (Actually, this 
requirement of slight bottom distortion is required for 
validity of the shallow-water approximation, anyway, so 
that the following expansion introduces no further 
approximation.) Then we can put 

z = D + y0 + eD 

in which e is a small function compared with D. Then, 
with no further approximations, 

(TTe? + 2^o + eD)  = u0
2 

or, expanding the denominator and solving, 

c_   gVoW 

gD 

and finally, 

z = D + y0 + gDy0 

gD 
(VIII-18) 

The principal fact to observe is the singularity occurring if 
uo = gD; that is, if the fluid speed equals the wave speed. 
For slow flows (u0

2 < gD, the subcritical regime), the last 
term is negative. For u0

2 = 0, the surface remains flat at 
z = D, whereas for slightly faster flows, the surface height 
decreases when the bottom goes up. 

For supercritical flows (u0
2 >gD), the last term is 

positive and the surface height changes in the same way as 
the bottom height. For u0

2 ->■ <*>, the surface and bottom 
are predicted to follow each other exactly. 

Near criticality (u0
2 «gD), the singularity is also 

present in the nonexpanded shallow-water solution, show- 
ing a breakdown in the long-wavelength hypothesis. To 
solve the problem accurately for near-critical flow re- 
quires the full two-dimensional equations, and is, there- 
fore, much more difficult. 

D. Initial Velocity from a Pressure Pulse . 

If a tank of fluid, initially at rest, is subjected to a 
pressure pulse on its free surface, the initial conditions for 
subsequent calculation can be determined by observing 
the .'nitial velocity profile produced by the pulse. In 
particular, we suppose the surface pressure to impart its 
finite impulse by means of an infinitely great pressure 
applied for infinitesimal time. Accordingly, the internal 
pressure will also vary with time in this same extreme 
fashion, and we can set 

0(r,t) = 01(r)5(t)   , 

where 5(t) is the Dirac delta function. In the momentum 
equation, all contributions other than that of pressure are 
thus momentarily negligible, and we may write 

M 
at" V0 = -5(t)  V0. 

This is immediately integrable, with the result 

u = -V0i(r)   . 

Utilizing the equation V-u = 0, we thus get 

V20,(r) = O 

which is to be solved for 0,(r), subject to the applied 
pressure and other boundary conditions. Then the initial 
velocity profile is found simply by taking the negative 
gradient of 0]. 

As an example, consider the water in a tank of 
depth D, for which the surface pressure pulse is 

0S = A sin kx 5(t)    . 

Applying the prescription, we solve V?'0i =0, subject to 
the condition that 0, = A sin kx along the surface (y = 0). 
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Trying the solution 

0i = Af(y) sin kx 

we get 

-^f + ^-o 

so that 

f(y) = c,eky+c2e-ky   . 

With f(0) = 1, we see that 

f(y) = c,eky+(l-c1)e-ky 

and 

0, A [c,eky+(l-c,)e-ky] sin kx . 

According to the next step of the prescription, 

9x 

3y 

so that 

u=-ak [ci eky+(l-ci)e"ky] coskx     , 

v=-ak [C] eky-(l-ci)e*ky] sin kx 

Finally, we may find Ci by requiring v = 0 at y = -D: 

c,e-kD = (l-c,)ekD 

so that the entire initial velocity profile is determined. 

E. The Hydraulic Jump,or Bore. 

Consider a channel of rectangular cross section of 
width w, filled with still water to a depth h0. Let the wall 
at one end of the channel commence moving towards the 
water with velocity u. Water will pile up against this 
moving wall, and a disturbance will propagate down the 
channel. The front of this disturbance wave is called a 
hydraulic jump, or bore. We call its speed of propagation 
v, and the depth of water behind the bore h. Our problem 
is to predict the bore speed and the water depth behind 
the bore, and to show that the bore necessarily converts 
kinetic energy into turbulent or heat energy. 

All that is necessary to accomplish these goals is to 
invoke the principles of mass and momentum conserva- 
tion and to assume that sufficiently far behind the bore 
the water level has again become flat. 

At any time, t, the left-hand wall has moved to the 
position ut, while the bore is at the position vt. 
Conservation of mass states that the amount of deeper 
water between ut and vt equals the amount of water at 
original depth between the initial wall position and vt. 
Thus 

wph(vt -ut) = wph0vt 

or 

h(v-u) = h0V    _ 

The momentum principle states that the amount of 
momentum present, wphu(vt-uf), must equal the total 
impulse given by the wall. To find this latter, we integrate 
the pressure over the face of the moving wall, finding the 
average to be &pgh, where g is the gravitational accelera- 
tion. Thus 

(^pghXhwt) - (»/ipghoXh,, wt) = wphu(vt - ut) 

or 

^g(h2-h^) = hu(v-u)   . 

Thus, with u and h0 specified, we have two equations for 
the unknown quantities, v and h : 

h(v-u) = h0v   , 

g(h2-h2) = 2hu(v-u) 

(VI1I-19) 

(VIII-20) 

These are closely analogous to the Rankine-Hugoniot 
shock relations for compressible fluids, see Chap. VI. A 
convenient solution of these two equations can be written 
in the form 

■ %/<><H^> 

u   =   (1 h )v 

For weak bores, we may approximate the relations 
in a relatively simple form, by putting h = h0 + e, where e 
is of the order of u. Then the equations become 

ve = uh0    > 

ge = uv    . 

or v = Vih^ and e = u\/h0/g. Thus, in this limit, the bore 
speed equals the shallow-water wave speed (independent 
of wall velocity) and the jump in height is, as postulated, 
proportional to u. The analogy in compressible fluid 
dynamics is the reduction of the shock speed to the sound 
speed in the weak-shock limit. 
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To examine the energy relations, we note that the 
total energy present in the system is 

Energy = (Kinetic energy behind bore) 
+ (Potential energy behind bore) 
+ (Potential energy ahead of bore). 

If the original channel length is L, then 

Energy = p(vt - ut)wh(& u2 ) 
+ p(vt-yt)whO£gh) 
+ p(L-vt)who04gho) . 

The energy input rate, on the other hand, is the product 
of force times velocity: 

Energy rate in = (ft pgh2 w)(u) . 

Subtraction from this of the time rate of change of energy 
present gives the rate of loss, which must be transformed 
into turbulence or heat. (The relative distribution into 
these two forms depends upon the viscosity of the fluid, 
but the rate of transfer is independent ofthat viscosity, as 
long as the boundary-layer effects are negligible. Viscosity 
does, however, help to determine the detailed structure of 
the bore.) 

Thus, the net energy loss rate is 

dE     1     ,, l 
~ dt" = 2 P8^       ~ 2 pwh(-v ~ "X     + gh) 

gravitational field, any irregularity of the interface will 
increase in amplitude. The upper fluid will fall into the 
lower one in a set of narrow penetrating spikes, while the 
lower fluid will float up in round-topped bubbles. This is 
an example of Rayleigh-Taylor instability. 

Another type, known as Kelvin-Helmholtz insta- 
bility, occurs along a slip plane between two fluids (or 
within one fluid). Any slight irregularity is amplified, 
resulting in mixing if there is no counteracting process. 
An example is seen in the formation of water waves from 
the wind; another is in the flapping of a flag. 

These two types of instability are best known for 
incompressible fluids (that is, for fluids whose motions 
proceed at velocities very small compared with their 
sound speeds). When accelerations are great and velocities 
are large, effects of compressibility can become impor- 
tant. Rayleigh-Taylor instability problems then refer to 
the effects of a compression wave, or shock, sweeping 
across an irregular interface. 

We shall here discuss several types of surface 
instability, including mainly those for incompressible 
fluids, because of their ease of solution and because of 
their qualitative applicability to some compressible-fluid 
situations. 

1. Rayleigh-Taylor Instability. We consider the case 
of low-amplitude interface motions. For an incompress- 
ible fluid, in which the density of an element remains 
forever constant, the mass equation in two-dimensional 
flow becomes 

+ 2pvwh0
2g 

Some algebraic manipulations, plus the elimination of v 
and g (using the two bore equations), give the final result 

dE 
dt 

hh. 

2(h + h0) 
pwu (VIII-21) 

^ + -^- = 0 
3x       9y 

(V1H-22) 

in which u and v are the velocity components in the x and 
y directions, respectively. In addition, the momentum 
equation, with vertical acceleration only (positive up- 
wards) breaks into the two components 

Note the analogy to Eq. (VI-14), which shows the 
entropy creation rate in a shock to vary as the cube of the 
shock strength. Here, for the bore, we also see such a 
dissipation from recoverable energy (kinetic plus poten- 
tial) to lost energy (turbulence plus heat). For weak 
bores, this dissipation can be neglected and relatively 
simple bore relationships can be derived, but these are not 
presented here because, in most circumstances, the full 
equations are required, and these are not particularly 
difficult to handle. 

F. Instability of Interface Between Fluids. 

Various examples of fluid motions exist in which 
the question of interface stability arises. If, for example, a 
heavy fluid is suspended over a lighter one in a downward 

9v    dp_ 
dt    8y Pg =  0 

(VIII-23) 

(VI11-24) 

in which we have dropped the transport term (u-V)u 
because of the smallness of the velocities. (The various 
approximations employed in this section can be verified 
as applicable by carefully keeping higher order terms in 
the velocity components or in the perturbation ampli- 
tudes and by noting the smallness of their contributions 
in the ranges of magnitudes we are considering.) 

Thus, we have three equations in three unknowns, 
u, v, and p. To solve them, we first note that Eq. 
(VIII-22) is satisfied if we can find a function, <p, such 
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that 

u  = 

v = 
dtp 

~9y 

(VIII-25) 

and 

9x2      3y2      ° 

The function, <p, is called a potential function. Further- 
more, with these substitutions, Eqs. (VIII-23) and 
(VIII-24) become 

^(p -'$ 
= 0 

and 

4k- ■'£- pgyj = o   . 

which two equations are consistent and lead to 

P =Po + pgy 

Now this is a two-fluid problem with a horizontal 
surface of separation. Let the surface of separation be 
denoted by the equation 

y = A(t) cos kx (VIII-27) 

We label the upper fluid with subscript 1, and the lower 
with subscript 2, and suppose that there is a potential 
function for each fluid, ^ and <p2- Likewise, there is a 
pressure solution for each fluid 

Pi PO.I 
+Pigy+Pi g^p- 

P2  =Po,2  +P2gy+P2  ^ 

(VIII-28) 

It may be verified that the following potential functions 
are solutions of Eq. (VI1I-26). 

<pt =e"ky f(t)coskx 

<p2 =-eky f(t) cos kx 
(VIII-29) 

(We have not specified the boundary conditions used in 
finding these solutions; they are such that the fluid is at 
rest at y = ± °° and that all features have the same 
periodicity in x as the initial interface between fluids.) 

We may now obtain the solution in complete form 
by applying the matching conditions at the interface. 

These are: 
1. The interface move£ with the fluid velocity. 

2. The pressure is continuous acioss the interface. 

The first of these can be approximated in this low- 
amplitude study by 

*•»■$„ ■ 
(VIII-26)       which reduces to 

ar- «to 
The second interface condition expresses the equality of 
the two pressures in Eq. (VIII-28) at y = 0. Thus 

Po,i +Pi (g Acoskx+S_coskx) 

df = Po,2 + P2 (g A cos kx-HLcos kx) 
dt 

Now the low-amplitude stage we are considering is 
supposed to be but a slight perturbation from complete 
equilibrium at zero amplitude, so that the zero-amplitude 
pressures must balance, and the results of applying the 
two interface conditions all reduce to 

d2A 
dt2 = A f«] (VIII-30) 

Thus, with g<0 (i.e., the acceleration pointing down- 
ward ), the coefficient of A on the right is positive when 
the upper fluid is the more dense, leading to exponen- 
tially increasing amplitude, and negative when the upper 
fluid is the less dense, leading to a timewise oscillation of 
amplitude. The first case is that of Rayleigh-Taylor 
instability. 

2. Combined Kelvin-Helmholtz and Rayleigh- 
Taylor Instabilities. Again we consider the case of 
low-amplitude perturbations. The situation is as above 
except that now the upper fluid moves to the right with 
velocity u = U relative to the lower one (which can be 
considered at rest without loss of generality). The 
equations must be generalized somewhat, and we shall 
employ a slightly different technique for solving them. 

The mass equation remains the same, and we satisfy 
it again with upper and lower potential functions y?, and 
<ß2. The momentum equations for the upper fluid, 
however, must retain the one component of transport 
relative to the rightward motion, so that the equations 
now are written 
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3u 3u    3p 
I7 + PUr-+^ = 0 at 3x    3x 

(VIII-31) 

Thus   the   two  pressure  integrals,  analogous  to   Ea 
(V11I-28), become 4' 

p. =Po,. +p. (gy+|f+uff) 

P2 -Po,2 + /°2 

(VIII-32) 

We now write the equation of the interface in the form 

y = y0e"t-** (VIII-33) 

and take for the potential functions [which satisfy Eq. 
(VIII-26) and proper boundary conditions] 

sPi = ay0e"ky + wt - ikx_tjx 

<Pi = py e^v + wt - ikx 
(VIII-34) 

y=0 

where a,0, and w are constants to be determined and k is 
the wave number of the interface disturbance. Again the 
same two interface conditions must apply, and there must 
be an expression for continuity of vertical velocity across 
the interface. Thus, for the upper fluid 

while for the lower fluid 

*-">-(*),.„ 
These two conditions lead to the determination of a and ß 

°=ir-iu 

'-r 
The conttnuity-of-pressure condition shows that in com- 
plete equilibrium, 

PO'.I-PI U*-P0,a 

and that in lowest order perturbation, 

p, (g + aw - ikUa) = p2(g + 0co) 

which reduces, finally, to 

w = 
\Pl+P\)      (P2+P.)2 . 

With U = 0, the result is the same as before. With U =£ 0, 
there are two additional contributions. The first on the 
right expresses the mean translation velocity of the waves. 
The second, under the square root,expresses the Kelvin- 
Helmholtz instability effect. It is always positive, hence it 
always contributes to giving CJ a real part corresponding 
to exponential growth of the instability. Even in the case 
that g = 0 and p, =p2, the instability remains, in which 
case 

co = ^kU(i±l)   . 

For a further discussion, see Rayleigh (Chap. XXI), and 
Chandrasekhar (Chap. XI). 

The results can be extended even further to include 
the effects of surface tension; rather than repeat the 
analysis, which has been given by Lamb (p. 461), we 
simply present the final equation for the exponential 
growth factor 

CJ 
_ ikUp, 

Pi  +P2 

k k (ßiZ£Ä + U
2P2P,     _ 

Jk\p2+Pl) (P2+Pl)
2 

"i^T~   (V11I-36) 

P2  + P\ 

in which T is the surface tension. It is seen, as could have 
been expected, that surface tension has a stabilizing 
effect. Likewise, a most-unstable wave length occurs, 
obtained by maximizing the second term on the right of 
Eq. (VIII-36) -- provided that the second term has a real 
maximum. 

The effects of viscosity are much more difficult to 
include in full generality; hpwever, in some cases it is 
sufficiently accurate to write ' 

OJ 
=jkU£i 

P1+P2 
■vk2 

VP2+P1/   (p 
P2P1 kT 

(P2+Pl)2     P2+P 
+ „2k2(VIII-37) 

where 
,=äL±äl 

Pi +P2 
and Mi, P2 are the coefficients of viscosity. The effects of 
diffusion between the materials have been discussed by 
Duff, Harlow, and Hirt. 
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IX. Numerical Fluid Dynamics 

A. Introduction. 

For a variety of special cases, the equations of fluid 
dynamics have been solved in closed or at least approx- 
imate form, with results that are of great value for 
understanding the behavior of deformable materials sub- 
jected to stress. Nevertheless, the majority of problems 
still defy useful analysis by classical techniques, and 
solutions must be obtained by other means. In this 
chapter we introduce one such approach-the use of 
high-speed digital computers for the numerical solution of 
the fluid dynamics equations. 

In recent years, the rapid advance of computer 
technology has enabled the accomplishment of, some 
remarkable studies in a wide scope of fields, and fluid 
dynamics is one of these. It is now possible to examine in 
detail such fluid flows as: 

1. The cratering of a meteor impacting on a space 
vehicle or on the surface of the moon. 

2. The breaking of a wave on a beach. 

3. The detonation of a stick of explosive and 
corresponding deformation of adjacent materials, and 
many more of similar complexity. 

Two things have been required to accomplish these 
investigations. One is the development of the computers 
themselves. The other is the development of mathematical 
techniques that transform the basic differential equations 
into forms suitable for numerical analysis. This discussion 
will concentrate on the latter, but it is useful to mention 
briefly the basic computer properties that we assume to 
be accessible. 

First, a computer has a memory which, although 
large, is finite. The largest computer memories typically 
have approximately 100,000 "words" of fast-access 
memory, together with as many as several million words 
of slow-access memory. Each word can contain either a 
number (usually with from 8 to 14 significant decimal 
figures, plus exponent and sign) or a coded symbol 
representing an arithmetic or logical operation. 

Second, a computer is capable of performing a 
sequence of such coded operations or instructions that are 
stored in its memory. The instructions cause the com- 
puter to perform arithmetic operations, to make available 
to the operator selected results of the computations, and 
even to modify its code of instructions during the 
calculations according to preassigned decision criteria. 

Third, a computer can do its work with great speed. 
Although it does no more than a human could do, it is 
incredibly faster, shrinking a century-long desk-top- 
calculator job to a one-hour process. It can repeat the 

innumerable operations that are required to solve accu- 
rately the dynamics of thousands of tiny fluid elements, 
whose combined motions describe the answer to the 
problem at hand. 

Beyond these features, we need not be concerned 
further with the properties of the computer. Instead, we 
examine some of the basic and vexing problems that face 
the numerical analyst when he attempts to exploit rapid 
electronic processing for the solution of his problems. In 
particular, we shall consider: 

1. How the fluid is to be represented in the 
computer. 

2. How the equations must be approximated. 

3. The numerical instabilities that can arise. 

4. The degree of accuracy that can be expected. 

5. What techniques are available for the various 
classes of fluid flow problems. 

B. Representation of the Fluid. 

Our discussion follows closely that of Chap. II 
Imagine a cylinder of gas, but instead of two windows 
there are many, lying contiguously along a line. Let 5x be 
the uniform window spacing, and x= be the distance from 
the end of the cylinder to window j. (Note that in 
contrast to Chap. IV, where the index denotes coordinate 
direction, the index here counts window number.) In 
analogy to Chap. II, we can write for the mass equation 

(pu)i+Vl-(pu)j_K 

Sx 
(1X-1) 

where (pu):+1/2 means the mass flux from window j to 
window j+I, and the prime indicates the quantity at time 
t + St. 

This "finite-difference" equation shows what is 
needed to represent the fluid in the computer. Since the 
memory can hold only a finite set of numbers, we must 
replace the infinite set required for precise description of 
the continuous fluid by no more field variable values than 
the capacity allows. Equation (IX-1) shows that we need 
the magnitude of density at each of the finite number of 
windows, and the flux between each pair of windows In 
addition, to include the other equations, it is necessary to 
store in the memory the window values of pressure 
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specific internal energy, and any other of the field 
variables that enter into the equations. This discrete-point 
representation is like a photograph that has been repro- 
duced in a newspaper. The continuous variation of 
black-to-white intensity is shown by a matrix of dots, 
each representing the average darkness in its vicinity. With 
both the newspaper picture and the cylinder of gas, the 
closer you space the discrete elements, the better you 
resolve the details of interest. 

From a calculational viewpoint, we refer to the 
windows as a mesh of computational cells. For a one- 
dimensional case like the cylinder of gas, an example of 
the finite-difference mesh of cells is shown in Fig. IX-1. 
For two-dimensional problems, the mesh might be a grid 
of rectangular cells, as in Fig. IX-2a. 

In this two-dimensional mesh, we show how the 
calculation resolves the cross section of a breaking water 
wave. For such two-dimensional examples, it is useful to 
have a set of marker dots, whose coordinates are stored in 
the computer memory, to show where the fluid lies in the 
mesh of cells (Fig. IX-2b). This enables us to observe 
which are the free-surface cells where special boundary- 
condition calculations are required, and also enables 
visualization of the internal contortions of the swirling 
fluid. The calculation results shown on the cover per- 
formed with the Marker-and-Cell (MAC) technique gives 
an example of the use of marker particles to show the 
changing configuration of a wave breaking on a beach. 

The fluid is sometimes represented by a mesh of 
moving cells, each following the motion of a small 
element of fluid, as in Fig. IX-3. Such a mesh is called 
Lagrangian, while the fixed mesh with fluid moving 
through it (see Figs. IX 2a and 2b) is called Eulerian. The 
Lagrangian mesh has the advantage of representing accu- 
rately the position of the free surface, and is also 
particularly useful for resolving thin films of a second 
fluid floating on the first one. It suffers from inaccuracies, 
however, when the cells become strongly distorted; the 
example in Fig. IX-3 would be particularly difficult to 
calculate if the breaking wave continued to splash over 
onto other parts of the fluid. An Eulerian mesh, in 
contrast, allows the distortions to be arbitrarily great, and 
no difficulties occur with such extreme cases as the 
splashing of one part of the fluid onto another. The 
principal difficulty with an Eulerian mesh is in attempting 
to resolve precisely the shape of a free surface or 
interface; these generally must have a stair-step appear- 
ance, as in Fig. IX-2a, unless a set of marker dots is used 
to show the detailed curving structure. 

j"l 
■4 ■■-—f- -—f- W- 

Fig. IX-1. 
A one-dimensional mesh of cells. 

Thus we see that, in a numerical calculation, the 
resolution of a given fluid state requires a discrete mesh of 
cells,   each  containing  information   on   the  localized 
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Fig. lX-2(a). 

A    breaking   water    wave    represented   in    a 
two-dimensional rectangular grid of cells. 
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Fig. lX-2(bj. 
The addition of marker particles denotes the fluid 
configuration with more precision. 

— 

Fig. IX-3. 
Initial and later configurations of a Lagrangian mesh 
representing the wave formed in a slosh tank. 
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averages of such quantities as density, velocity, pressure, 
and specific internal, energy. In addition, marker particles 
may be necessary to show precisely where the fluid lies. 
From the cellwise data, we then can calculate cell-edge 
fluxes, by forming appropriate averages of adjacent 
cellwise quantities. 

As an alternative to the use of cell-center averages 
for finding cell-edge fluxes, we may actually define some 
of the quantities as centered on the cell edge itself. A 
contrasting pair of possibilities is shown in Fig. 1X4. The 
left-hand cell shows all quantities to be cell centered; 
accordingly, the boundary flux must be obtained by 
averaging. This can be done in several ways, as shown in 
the following examples of mass flux. 

Centered 

(pu)j+v4 = (Pj + pj+1)(Uj+ uj+1)/4      . (IX-2) 

Zip-type 

(P")j+'/2 = (PjUi+i + pj+1 Uj)/2 . (IX-3) 

Donor-cell 

Pj (Uj + Uj+i)/2   if(uj + Uj+1)>0 

Pj+l (uj + Uj+i)/2 if (Uj + uj+1) < 0 
(pu)j+H = •   (1X4) 

Some of the properties of these will be discussed below. 
The right-hand cell of Fig. 1X4 shows a commonly 

used staggered-mesh centering, in which the horizontal 
velocity component is centered on the left and right faces, 
while the vertical velocity component is centered on the 
bottom and top. The advantages of this type of centering 
are particularly evident in the calculation of incompress- 
ible fluid flows. 

Several other methods have been devised for repre- 
senting the fluid by a finite set of numbers, but only one 
seems to be as promising as the various discrete meshes of 
cells and/or particles. This is the use of truncated series 
expansions (Fourier series, for example) to represent the 
field variables. The coefficients of the series are the 
numbers stored in the computer; the more that one can 

u.v.p.p.I 

Fig. IX-4. 
Two types of variable locations in cells. 

keep in the memory, the more accurate is the representa- 
tion of the fluid structure. 

C. Approximating the Equations. 

With only a finite number of grid points to 
represent the fluid, we cannot calculate space derivatives 
precisely, but must approximate them with finite differ- 
ences. This was already indicated for the mass equation in 
the previous section of thih chapter. Fortunately, how- 
ever, it is not so much the differential equations that are 
crucial guides to determining the dynamics as are the 
basic principles of mechanics themselves: the laws of 
mass, momentum, and energy conservation. Thus, we may 
start from these principles as we did in Chap. II, express 
them for the cells of our mesh, but then stop before the 
last step; namely, passing to the limit as 6x and 5t go to 
zero. 

Even when we rely on the differential equations as a 
starting point for deriving finite-difference approxima- 
tions, it is essential for accuracy to keep in mind the 
conservation principles. For example, we may examine 
the derivation of a finite-difference approximation for the 
one-dimensional momentum equation, Eq. (II-3): 

9pu       d_ 
3t       3x (pu2 + p) = 0 (IX-5) 

An alternative differential formulation of this equation 
can be obtained in combination with Eq. (II-2): 

3u 
at 

.     3u 
+ U3x- 

+ 132 
p dx (IX-6) 

Equation (IX-5) is in conservative form, which can be 
proved by integrating between the two fixed positions, x, 
and x2: 

dt  1 pu dx + (pu2 + p)X2 - (pu2 + p)x ( = 0 

Accordingly, one observes that the time rate of change of 
all the momentum in the interval is given by the 
difference between the momentum fluxes at the two 
ends; there are no internal contributions to the changes of 
momentum. This is in agreement with the principle of 
momentum conservation; hence, the designation of con- 
servative form for Eq. (IX-5). 

In contrast, Eq. (IX-6) is not in conservative form. 
The contrast becomes even clearer in the corresponding 
finite-difference equations: 

<e^4[(,u>tpV„-<,u»tp),K = o 
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Uj-Uj Uj 

St    + Sx' (ui+,/> " uJ'/2) 
+ Tg^ (Pj+% -Pj-%) = 0 

The first form relates changes of momentum in the cell to 
differences between fluxes at the edges; the second form 
relates changes of velocity in the cell to terms that are not 
simply cell-edge quantities. The first form can be summed 
over many cells (say, from j = jt to j2) to give 

J_ 
6t 

h h 
£    (Pu)'j ~ £     (pu)j 

Sx (P«a+P)j2+14-(PUa+?)],.% = 0 

In the internal sum, the flux terms have canceled in pairs 
because the flux on the right side of cell j is exactly the 
same as the flux on the left of cell j + 1. 

A similar sum of the second form does not show 
cancellation in pairs for two reasons. First, the pressure 
term cannot even be made differentially conservative 
unless the flow is adiabatic (p a function of p only); in 
general, that term contributes to a real nonconservation 
of u in any interval. Second, even if the flow were 
adiabatic, neither part of the finite-difference flux can be 
mathematically transformed to conservative form, as it 
can in the differential equations. Thus, while we may 
differentially write 

■s"nfr-2sh«-(,'H 
and thus get a conservative form, the expression 

si(uj+V4-"j-54) 

cannot be transformed to conservative form unless we 
replace Uj by H(uj+Vi + \xyVi). Indeed, in the form shown, 
the flux on the right side of cell j is UjUj+1/2, whereas that 
on the left side of cell j+1 is Uj+1Uj+1/2 and there is a 
resulting loss at each cell boundary of a quantity which 
differentially (from that term at least) should be con- 
served. 

In any case, when it comes to writing the finite- 
difference equations for any numerical fluid-dynamics 
technique, serious consideration should be given to the 
rigorous conservation of mass, momentum, and energy. 
Rarely, this may be sacrificed in favor of other desirable 
features, but the possibility of disastrous consequences 
should not be ignored. 

Sometimes the conservative properties of the finite 
difference equations are not evident from the form used 
by the computer, and can be proved only by algebraic 
manipulations, which may be rather lengthy and tedious. 

In one instance; a new differencing technique was 
proposed which, although appearing not to conserve 
energy, was of much potential value for the accurate 
calculation of entropy changes. When the computer 
program was run, however, it turned out that the energy 
was, indeed, conserved after all, and this was eventually 
proved by careful algebraic manipulations of the finite- 
difference equations. 

A second aspect of the equation approximations has 
already been implied by the finite-difference mass and 
momentum equations presented so far. This is the 
necessity for finite time intervals to be used in following 
the evolution of a solution from its given initial configura- 
tion to the succeeding stages. At the beginning of every 
step (or time cycle), the computer memory contains all 
the information necessary to define the configuration at 
that stage. This is either supplied as the initial data for the 
problem, or as a result of the previous cycle of calcula- 
tion. The calculations then produce the configuration at 
the end of the next cycle, a time interval 5t later. Thus, 
by the end of n time cycles, the problem time will have 
advanced to the time t = not. In this way, the calculation 
continues, repeating at each cycle all the operations 
necessary to describe the dynamics of the fluid in each 
cell. The results are much like the frames of a motion 
picture, and if a configuration plot is made at the end of 
every cycle and these are assembled into a motion picture, 
the projected film will show a smooth evolution through 
time, provided that 5t is small enough. 

D. Numerical Instabilities. 

An intriguing aspect of fluid dynamics is the 
potentiality for instability in fluid flows. Thus, for 
example, if the flow speed of water past a cylindrical rod 
is gradually increased, there will be noticed some signif- 
icant departures from the simple, steady laminar flow that 
occurs for low-velocity flows. Such a steady flow becomes 
unstable, and the wake begins to oscillate. As the speed 
increases, the oscillations turn into a sequence of vortices 
that are shed into the wake, and at even higher speeds the 
wake becomes turbulent. This is true fluid-dynamic 
instability, and we hope that the numerical calculations 
will exhibit it realistically. 

In contrast, however, the approximation equations 
also can be plagued by numerical instability that may 
obscure the otherwise accurate results, or even reduce 
them to nonsense. This type of instability is to be 
avoided, if possible, or at least kept to a minimum. 
Usually, the manifestations of numerical instability are so 
severe and obviously false that no likelihood exists for 
confusing the results with the desired solutions. In some 
cases, however, investigators have mistaken numerical 
instability for true turbulence, and have drawn fallacious 
conclusions from their calculations. 

To see how numerical instability can arise, consider 
a simple  example. In differential form, the equation 
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describing the effects of viscosity on parallel fluid flow is 

9u 
8t 

8iu 
3y2 

where u is the velocity normal to the y direction and 
v = ß/p is the kinematic viscosity coefficient. This differ- 
ential equation is stable, as can be demonstrated by 
considering the behavior of a solution of the form 

u = u0 + A(t) cos ky   . 

This represents a uniform flow velocity, u0, with a 
superimposed cosinusoidal perturbation. If the perturba- 
tion amplitude, A(t), decreases with time, the perturba- 
tion dies away and the result is complete stability. 
Inserting the trial solution into the dynamical equation, 
we get 

dA 
dt 

so that 

A = A0c 

i*2A 

•Kk2t 

Since the kinematic viscosity coefficient is always posi- 
tive, the stability is proved. 

In finite difference form, we might write 

n+1 

St 5y 
t  n 

+ u 'j-1 2Uj
n) 

where n counts the time cycles. The corresponding trial 
solution is 

uj1 = u0 + AnR[eiki«y]    , 

where R[eikJ«y] is the real part. Inserting this trial 
solution, we get 

A" + ,=A"|l-f^(l-cosk5y)]      . 

Thus, the perturbation amplitude changes each cycle by a 
constant factor that is less than or equal to unity. If the 
factor lies between zero and unity, the perturbation 
decays uniformly, and the solution is stable. If the factor 
lies between zero and minus one, the perturbation decays 
in oscillatory fashion, and the solution still is stable. But 
if the factor is less than minus one, the amplitude 
oscillates with increasing magnitude, and the solution is 
unstable. Thus, the condition for numerical stability is 

2vh t 
Sy 2 (I -cosk5y)<2 

In practice, this is a limitation on St, the time interval per 
cycle. The most stringent case, incidentally, is for the 
disturbance wave number such that cosk5y=-l, corre- 
sponding to a wave length equal to two cell widths. Thus 

the necessary condition for stability is 

sy2 Th< 1/2 

This is an important result. It appears in numerous 
circumstances in numerical fluid dynamics problems, and, 
indeed, in many other types of numerical problems in 
which there is diffusion or conduction of some property 
through a material. 

This example has shown a particularly widespread 
type of numerical instability, and has demonstrated how 
its control results in a restriction on the amount of 
problem time advancement that can be accomplished each 
cycle. A second example demonstrates another type of 
instability that is just as widespread and important. For 
this, we examine the equation describing the convection 
of material density by means of a constant velocity field. 
The differential equation is 

for which the general solution is 

p = arbitrary function of (x -u0t) . 

This   is   a   stable   traveling   wave   solution,  describing 
displacement without change in form. 

The corresponding finite-difference equation we 
examine is the simplest spatially centered form Eq 
(IX-2): 

n+l n 
PA ZfL   .   Uo   ,  n n 

St + 25x foj+l-Pj-l) = 0       • 

The trial solution is 

pJ1=p0+AneikJ*x 

with the result that 

in+l ^ An An(l- 
iu0St 

~8x sin k5x) 

In this case, the growth factor is complex, so that we 
must examine its magnitude, which is 

u St 
1 + ( -j— sin kSx)2    • 

This always exceeds unity, so that the difference equation 
is unconditionally unstable, and therefore useless for 
calculations unless suitably modified. 

One such modification is the donor-cell technique, 
according to which we write [see Eq. (IX-4)]: 

n+l      n 

St 
"Pi   .    uo   .  n        n    , 

Sx~(pJ -Pj-1> = 0 ifu0 >0 
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or 

n+1        n 

5t      +  67^+1  ~P\ )"0ifuo <0    • 

Consider the case in which u0 >0. Insertion of the 
perturbed trial solution gives 

An+1 = An[l 
u0St 

Öx (l-e-ik6x)] 

Again, the coefficient is complex, and its magnitude must 
be calculated. The result is 

l-2X + 2X2+2(l-X)Xcosk5x     , 

where X s u05t/5x. For X < 1, the maximum value of this 
amplification factor comes when cosk5x= 1.0, in which 
case the factor is exactly unity. With unit amplification, 
the perturbation neither grows nor decays, and the 
calculation can give useful results. In contrast, for X> 1 
the maximum comes from cosk5x=-1.0, in which case' 
the factor becomes (2X-1)2. With X>1, this factor 
exceeds unity and the perturbation grows. Thus the 
donor-cell finite-difference convection term is condition- 
ally stable, the condition for stability being the famous 
Courant condition: 

u05t 
6x < 1 

We have presented two examples that indicate the 
importance of numerical stability considerations in the 
formulation of fluid dynamics computing techniques. 
They also show a large degree of arbitrariness in the 
choice of finite-difference representations for fluid flow 
processes. Even when the principles of conservation and 
the requirements of stability have been fulfilled, there still 
remain a large number of alternative formulations. The 
choice then depends upon such factors as: 

1. Ease of solving the equations on the computer. 
Some finite-difference forms have very desirable proper- 
ties, but the algebraic difficulties encountered in solving 
them are formidable. 

2. Scope of applicability. A particular formulation 
may be restricted to high-speed flows, to incompressible 
Hows, or to any of several other special-purpose cases. 

3 Accuracy. The next section of this chapter 
shows how the degree of accuracy can be related to the 
choice of finite-difference representation. 

The subject of numerical instability has been 
illustrated here in only the briefest form. Any investigator 
who uses numerical methods for fluid dynamics calcula- 
tions will need to examine the subject in much more 

detail, concentrating on such topics as: 

1. Implicit formulations, which improve stability 
but almost always complicate the algebraic solutions. 

2. The combined effects of viscosity and convec- 
tion terms on the stability of the full equations of fluid 
dynamics. 

3. The important effects of the variable coefficients 
(nonlinear terms) on certain types of numerical instabil- 
ity. 

This last item ha? been of crucial significance in 
limiting the calculation of incompressible flow problems 
to examples with relatively low Reynolds numbers. 

Some of these topics have been discussed in the 
many publications on numerical fluid dynamics. Others 
are still mysterious, and the subject of intensive investiga- 
tion. 

E. Accuracy of Numerical Solutions. 

How accurately can numerical calculations repre- 
sent true fluid flows?To answer this requires a complete 
assessment of several factors which can vary from 
problem to problem. In general, the following are directly 
related to the matter of accuracy: 

1. How valid are the basic differential equations 
themselves? or, alternatively, How realistic is the physical 
model in describing fluid-flow processes? To answer this 
we  recall   the   physical   basis  of the  equations.  The 
ideal-fluid differential equations assume that the fluid is 
continuous  and  not  interpenetrating.  The  effects  of 
random molecular motions relative to the mean flow are 
represented approximately  by  the  addition  of terms 
representing viscosity, heat conduction, and solute diffu- 
sion. The principles of mass, momentum, and energy 
conservation are satisfied in a large-scale sense. In these 
respects, the equations go a long way towards describing 
physical   reality.  But  neglecting details  of the  exact 
molecular motion is potentially destructive to accuracy 
particularly in the study of rarified gases. Accordingly' 
the use of such equations as a basis for numerical studies 
of strongly nonequilibrium processes (shock structure, for 
example) will also suffer from the same uncertainties, 
even if there are no contributions to inaccuracy from the 
numerical approximations. Some investigators have also 
questioned the validity of the continuous-fluid equations 
for the detailed representation of turbulent flows, but this 
does not seem to be of crucial concern. In any case this 
uncertainty will not be resolved until computers are much 
larger and faster. 

2. How  finely   can   the   fluid   configuration  be 
resolved by the finite-difference mesh of computational 

8a 



\.- 

cells? Coarse resolution precedes the study of detail, but 
if the numerical calculations rigorously represent the basic 
fluid-flow conservation principles, useful results can still 
sometimes be obtained. A related question concerns the 
fineness of the time steps. Often the magnitude of 5t is 
restricted by stability requirements, but even when this is 
not the case, the time increment per cycle still cannot be 
too large. Experience shows that for each cycle the 
change in value of any quantity in a cell usually must be 
small compared with the value of the quantity in the cell. 
In addition, the fluid must move at most only a fraction 
of the cell width each cycle. If the configuration at the 
end of each cycle were plotted on film and the sequence 
projected as a motion picture, it should appear to develop 
smoothly, rather than in large jerks. 

For many problems of interest, presently available 
computers impose severe limitations on the space and 
time resolution that can be attained. For example, 
although many powerful numerical techniques exist that 
can be applied to fully three-dimensional problems, few 
such studies have been attempted because the computers 
are too small and slow. Even today the principal 
investigations are for those three-dimensional problems in 
which there are one or two symmetry coordinates. This 
limitation precludes detailed investigations of turbulence 
flows, a subject of great current interest. 

3. How accurate are the finite-difference approxi- 
mations? The answer is usually stated in terms of the 
order of the truncation terms. Although this is sometimes 
a useful indicator of the degree of accuracy, it also can be 
misleading. These ideas are best illustrated by considering 
several aspects of a specific example. We choose the 
differential equation for mass convection by a constant 
positive velocity: 

We   have   already   examined   two   alternative   finite- 
difference approximations for this equation; namely, 

n+l        n 
°i       'Pi 

St 

and 

n+l 
-P\ 

5t 

o   ,-n n   . 
•25x"0>j+l-Pj-l) = 0 

yx(p} -PH) = O 

The first is unconditionally unstable, whereas the second 
is stable if u05t/6x < 1.0. Now, each can be expanded in 
a Taylor series about the space-time point j, n, to give, 
respectively, 

3t     2 W +      +u° U + T" w +     )   ° 

and 

§fi + 5tÜ£ + 
3t      2   3t2   + 

U°U 2 3x2 + ~6~^ + "j^° • 
where the dots indicate neglected higher-order terms. 
Both finite-difference equations differ from the original 
differential equation by a term that is 0(61). The first 
equation has a spatial error term that is 0(5xa), while in 
the second equation this term is 0(6x). Thus we might 
claim that the first one represents the differential equa- 
tion better than the second, and accordingly would be 
more accurate. Actually, we know from stability analyses 
that the first one cannot be accurate at all, because it is 
unstable, whereas the second one is conditionally stable, 
and hence is conditionally capable of calculating with at 
least some degree of accuracy. If both finite-difference 
forms were stable, the one with the higher order of 
residual terms might be the more accurate, but even this is 
not in general assured. 

Thus, we see that simply examining the orders of 
the truncation terms does not reveal all the properties of 
the numerical approximation. Nevertheless, there is some- 
thing of much value that can be surmised from the 
expanded equations. They allow a somewhat different 
approach to the subject of instability, which gives both an 
insight into the cause of that phenomenon, and permits 
investigation of nonlinear instabilities. The technique of 
Hirt is here illustrated for the case of the example above. 
We replace the 5t term as follows 

5t a^p 
2 3t2 

6t a_ 
2 at 

/ap\ st a /  dp \ 
W=T37(ru°ax"+--7 

u06t 3 3p u25t d2p 
2   ax at 

so that to lowest order the equations can be written 

u25t 32p 3p dp 

a7 + u° ix 2    3x2 

op 

3t 

3p      u05x /       u05t\ 
U°3^ = -2-(1-lx-j 

*2i 
ax2 

To lowest order, the first equation has a negative 
diffusion coefficient, so that it always would be unstable. 
The second one has a positive diffusion coefficient if 
u06t/5x < 1, and is accordingly stable when that criterion 
is satisfied. 

This result, which is in accord with the linear 
stability analysis, demonstrates an important observation: 
the instability of a difference equation can often be 
related directly to a negative diffusion coefficient. Fur- 
thermore, we see how the addition of a positive diffusion 
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effect, for example from viscosity, can cure the instability 
in a way that is predictable from this type of truncation 
expansion. In addition, it enables the stability analysis of 
equations with variable coefficients; if u0 were a function 
of x in the above example, a similar expansion would 
show that terms proportional to du0/dx would occur in 
the coefficient of the diffusion term, leading to a stability 
condition not detectable by the linearized analysis tech- 
niques. 

Opinions vary about the usefulness of expanding the 
finite-difference equations as a means of assessing accu- 
racy. There is considerable evidence to show that high- 
order vanishing of the truncation terms does not 
necessarily imply increased accuracy. On the other hand, 
it is clear that zero-order truncation terms are intolerable,' 
since they do not even allow the limiting equations, as St 
and 5x go to zero, to approach the differential expres- 
sions. Also troublesome are forms with truncation terms 
that are 0 (1/61), which occasionally have been used for 
calculation. To see how these last can arise, consider the 
following difference approximation to the constant- 
velocity mass convection equation: 

rt+1 
0"   * -i/2<P|Vpj,+i) 

5t 

Expansion gives 

26^ <*1 -P"-1) = 0 

3p 

at 
-£ _ — ( - u°St2\ 

U° 3x " 2fit   X      ~SxV 3x2 

For stability, we need, as before, to have u0öt/5x<l, 
but as 5t -+0, the diffusion coefficient increases without 
bound and the smearing completely obscures the desired 
results. Note, however, in comparing this result with the 
regular donor-cell form, that the diffusion coefficient is 
nearly the same in both cases if u05t/6x is almost unity. 
This means that calculations with almost the largest 6t 
consistent with stability would be likely to give fairly 
good results; but although this criterion is easily applied 
for the simple example presented here, it becomes much 
more difficult to use in general for this type of equation, 
and is accordingly likely to give excessive smearing of 
details in at least some parts of the flow field. 

4. Can useful calculations be performed with un- 
stable difference equations? Contrary to the implications 
presented so far, there are important circumstances in 
which accurate results can be obtained using difference 
equations that are unstable. Two cases are worth mention- 
ing. The first is for instabilities that grow slowly; in such 
examples useful and accurate results are possible if the 
elapsed problem time can be short. The second is for 
bounded instabilities, which may grow rapidly but only 
briefly, being bounded in amplitude by nonlinear effects 
before they become too large. 

F. Capabilities of Present Numerical Techniques. 

No method is known that can be used for all 
possible types of fluid flows. All presently available 
techniques have restrictions of one sort or another. The 
following are some classes of these restrictions, and the 
corresponding types of numerical methods are useful for 
each. Many of the techniques that are mentioned have 
been described extensively in publications listed in the 
bibliography. 

1. Coordinate Restrictions. Coordinate restrictions 
are of several types. The Lagrangian-Eulerian viewpoints 
have already been mentioned, and the relative merits 
discussed. For high-speed flows, both types of coordinate 
systems have been used extensively. For low-speed (in- 
compressible) flows, the available computing techniques 
are almost invariably formulated for Eulerian coordinate 
systems, with but one new technique (the Lagrangian- 
Incompressible (LINC) method) in a Lagrangian system. 
The reason for this is that identical preservation of 
individual cell volumes is difficult to achieve when the 
vertices  move  with  the  fluid  in  seemingly  arbitrary 
directions.   In  contrast,   Eulerian   cells   relate volume 
conservation  directly  to velocity values, and rigorous 
mcompressibility can be assured either by introduction of 
a stream function (stream function and vorticity tech- 
niques) or by corrective procedures (pressure and velocity 
techniques). In a few types of computer programs, there 
are  either mixtures of both Lagrangian and Eulerian 
cooidinate systems (the Particle-in-Cell (PIC) method, for 
example) or other similar schemes for combining the 
advantages of both viewpoints. Periodic rezoning of a 
Lagrangian  calculation  introduces  Eulerian  properties 
while  one variant (the Combined Eulerian-Lagrangian 
(CEL)   method)  has  distinct   regions  that  are  either 
Eulerian or Lagrangian. 

A different type of restriction applies to purely 
Cartesian coordinates. In many cases, the extension to 
cylindrical coordinates with azimuthal symmetry is an 
available option, but few existing programs have any 
greater versatility as to the coordinate system that can be 
readily used. Special-purpose programs have been written 
utilizing such coordinates as elliptic-hyperbolic, but their 
scope of applicability is usually limited. Recent attempts 
have been made to devise programs for arbitrary ortho- 
normal coordinate systems, the purpose being to allow 
calculations of fluid flow adjacent to complicated shapes 
of rigid bodies. Such flows are difficult to calculate 
accurately unless the coordinate lines follow the shape of 
the object, so that a simple Cartesian mesh of rectangular 
cells is restrictive in that regard. 

2. Speed Restrictions. Until recently, all computer 
programs were restricted to either low-speed (incompress- 
ible) flows or to high-speed (sonic or supersonic) flows. 
There are several reasons for this. First, in high-speed 
flows, the changes that occur at each point result from 
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only local Influences, whereas low-speed flow calculations 
must allow for distant influences every cycle. Second, 
numerical stability restrictions for high-speed flows ordin- 
arily become intolerably severe as the flow speed de- 
creases. Third, low-speed flows, which need no equation 
of state, cannot therefore sense the effects of compress- 
ibility when the flow speed is increased. A recent 
discovery that enables both extremes to be calculated is 
an implicit treatment of the density calculation, and this 
has been incorporated into a method called the Implicit 
Continuous-fluid Eulerian (ICE) technique. 

3. Material Property Restrictions. Material property 
restrictions include a variety of examples, with varying 
degrees of stringency. The simplest type of fluid-flow 
computer program treats the fluid as ideal, with an 
isotropic thermodynamic stress. Some generalizations to 
this arc the following: 

a. Full viscosity effects, with simple scalar coeffi- 
cients, are usually easy to incorporate into almost all 
types of basic fluid-flow calculation techniques. 

b. Plastic flows can usually be studied by means of 
fairly straightforward extensions of the viscosity methods. 

c. Elastic material dynamics generally can be calcu- 
lated only with Lagrangian coordinate systems, since 
stress determinations require detailed information on 
localized deformation not available from Eulerian calcula- 
tions. 

d. Non-Newtonian behavior of a variety of sorts are 
possible, but few have been calculated for multidimen- 
sional, transient flows. Much developmental work remains 
to be done before some of the more exotic problems can 
be attempted. 

e. The dynamics of reactive materials (chemical or 
nuclear) have been studied with both Lagrangian and 
Hulerian programs. Much progress has been made in the 
detailed understanding of detonation processes, for 
example. A related study is the dynamics of materials 
with finite-rclaxation-rate processes, as for example the 
flow of a dissociating gas at low pressures, in which the 
mean dissociation time is comparable to the transit time 
across the region of interest. 

4. Multiple-Material Restrictions. Lagrangian calcu- 
lations are ideally suited to the study of flows with many 
different interacting material regions. Eulerian calcula- 
tions can be adjusted to handle such studies by means of 
marker particles, interface line segments, or flux limiters. 
These last inhibit the flux of material across a cell 
boundary until such a flux is appropriate, as sensed by the 
nature of the pure materials or mixed-cell materials in the 
adjacent computational cells. The only circumstance in 
which   a   multiregion   capability  presents  considerable 

difficulty is in the use of stream-function and vorticity 
variables for incompressible flows. The problem for that 
special case is one of expressing correctly the interface 
stress conditions. 

5. Dimensional Restrictions. Although the real 
world is truly three dimensional, there are many kinds of 
fluid flows in which the configuration is independent of 
one or two of the space variables. These are called 
one-dimensional or two-dimensional flows, and their 
numerical study allows considerable simplification over 
those with variations in all three dimensions. Although 
most numerical techniques can be extended readily to 
three-dimensional studies, the main factor precluding this 
is the limitations of the present-day computers them- 
selves, which are not fast enough to process well-resolved 
dynamics in economically reasonable periods of time. 
There is, however, another type of difficulty that occurs 
in three-dimensional calculations; namely, the presenta- 
tion of results in a way that can be efficiently visualized 
and utilized by the investigator. Enormous amounts of 
data are involved in such a calculation, and much 
ingenuity is required to summarize this in concise yet 
complete form. 

6. Microstructure Restrictions. Turbulence and 
individual molecular fluctuations are two types of micro- 
structure that are difficult to resolve. Nevertheless, some 
fluid-flow calculation methods have been devised to 
handle both of these. For turbulence, there are transport- 
equation techniques that enable the Reynolds-stress 
components and thei»- effects to be studied for transient 
problems in arbitrary configurations. For molecular dy- 
namics, there are programs that follow the individual 
trajectories of a small sample of molecules as they interact 
with each other and container walls. These latter are 
necessarily restricted in their applicability to geometries 
that include only a few mean free paths in size, but 
nevertheless are extremely useful for the study of strongly 
nonequilibrium transport processes, and for investigating 
continuous-fluid transport coefficients near rigid walls. 

7. Local-Force Restrictions. In most fluids, the 
stresses are exerted only between immediately adjacent 
elements. Incompressible fluids simulate action at a 
distance only because of the relatively great speed of the 
sound signals, and special numerical techniques can 
account for this quite nicely. In some types of problems, 
however, there is true action at a distance, and the 
necessary numerical modifications to handle this can be 
quite complicated. Gravitational attraction between fluid 
elements is the simplest of these and can be accounted for 
with relative ease. Of current interest but somewhat more 
complicated, however, are the electromagnetic forces 
encountered in the special class of fluids called plasmas. 
For these there are both static and dynamic stresses that 
act on distant elements of the fluid, and these in turn are 
usually  coupled  to the applied electromagnetic fields 
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supplied by the enclosing apparatus. With the incentive of 
developing controlled thermonuclear reactions, there liave 
recently been developed several numerical methods for 
studying such flows, but the techniques are still limited in 
applicability, and much remains to be accomplished. 

v 
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